Skip to main content

Advertisement

Log in

Community assembly in temperate forest birds: habitat filtering, interspecific interactions and priority effects

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Recent attempts to understand the processes governing community assembly have increasingly focused on patterns of phylogenetic relatedness and functional similarity among co-existing species. Considerations of the species pool, the number and identity of functional traits and the metrics used to identify patterns have come under scrutiny as possible influences on the detection of non-random patterns. Most mechanistic explanations of community assembly based on functional and phylogenetic approaches rely on deterministic explanations, while ignoring the role of stochastic processes and historical contingency, despite the prominent historical role of both types of explanations of species coexistence. We evaluated the phylogenetic and functional structure of 20 temperate forest bird assemblages in northeastern North America. We compared three approaches for characterizing the functional structure of assemblages. Regardless of approach, assemblages were generally no different than expected by chance. In contrast, phylogenetic structures of bird assemblages were overdispersed, clumped or consistent with random assembly depending on the site. Nonetheless, we found little evidence for differences in phylogenetic structure arising as a consequence of the identity of the species pool. We identified a strong relationship between the proportion of residents and phylogenetic relatedness that was unrelated to the species richness of assemblages. Our results suggest that different assembly mechanisms may structure resident and migratory subsets of temperate breeding bird communities. Resident assemblages are likely structured by interspecific interactions and habitat filtering prior to arrival of migrants. In contrast, the composition of migrant assemblages may be a consequence of priority effects in which the presence and abundance of residents and earliest arriving species affect the ability of subsequent migrants to colonize sites. This phenomenon enhances the likelihood of multiple alternative community structures in similar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boucher FC, Thuiller W, Davies TJ et al (2014) Neutral biogeography and the evolution of climatic niches. Am Nat 183(5):573–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164(6):683–695

    Article  Google Scholar 

  • Cavender-Bares J, Ackerly DD, Baum DA et al (2004) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163(6):823–843

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87(sp7):S109–S122

    Article  PubMed  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA et al (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chase JM (2003) Community assembly: when should history matter? Oecologia 136(4):489–498

    Article  PubMed  Google Scholar 

  • Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328(5984):1388–1391

    Article  CAS  PubMed  Google Scholar 

  • Chase JM (2014) Spatial scale resolves the niche versus neutral theory debate. J Veg Sci 25(2):319–322

    Article  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc Lond B Biol Sci 366(1576):2351–2363

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesser RT, Banks RC, Barker FK et al (2013) Fifty-fourth supplement to the American Ornithologists’ Union check-list of North American birds. Auk 130(3):558–572

    Article  Google Scholar 

  • CLEAR (2010) Long island sound watershed’s changing landscape. 2010 Data. University of Connecticut. College of Agriculture and Natural Resources. http://clear.uconn.edu/projects/landscapeLIS/index.htm

  • Dehling DM, Fritz SA, Töpfer T et al (2014) Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37(11):1047–1055

    Google Scholar 

  • Drake JA (1991) Community-assembly mechanics and the structure of an experimental species ensemble. Am Nat 137:1–26

    Article  Google Scholar 

  • Forsman JT, Monkkonen M (2003) The role of climate in limiting European resident bird populations. J Biogeogr 30(1):55–70

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160(6):712–726

    Article  CAS  PubMed  Google Scholar 

  • Fritz SA, Purvis A (2010) Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv Biol 24(4):1042–1051

    Article  PubMed  Google Scholar 

  • Fukami T (2004) Assembly history interacts with ecosystem size to influence species diversity. Ecology 85(12):3234–3242

    Article  Google Scholar 

  • Fukami T (2010) Community assembly dynamics in space. In: Verhoef HA, Morin PJ (eds) Community ecology: processes, models, and applications. Oxford University Press, Oxford, pp 45–54

    Google Scholar 

  • Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    Article  Google Scholar 

  • Gianuca AT, Dias RA, Debastiani VJL et al (2014) Habitat filtering influences the phylogenetic structure of avian communities across a coastal gradient in southern Brazil. Austral Ecol 39(1):29–38

    Article  Google Scholar 

  • Gomez JP, Bravo GA, Brumfield RT et al (2010) A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds. J Anim Ecol 79(6):1181–1192

    Article  PubMed  Google Scholar 

  • Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81(9):2606–2621

    Article  Google Scholar 

  • Gotelli NJ, Graves GR, Rahbek C (2010) Macroecological signals of species interactions in the Danish avifauna. Proc Natl Acad Sci 107(11):5030–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham CH, Parra JL, Rahbek C et al (2009) Phylogenetic structure in tropical hummingbird communities. Proc Natl Acad Sci 106(Suppl 2):19673–19678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant PR, Grant BR (2006) Evolution of character displacement in Darwin’s finches. Science 313(5784):224–226

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson L (1987) Interspecific competition lowers fitness in collared flycatchers Ficedula albicollis: an experimental demonstration. Ecology 68:291–296

    Article  Google Scholar 

  • Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51(5):1341–1351

    Article  Google Scholar 

  • Hansen TF (2012) Adaptive landscapes and macroevolutionary dynamics. In: Svensson E, Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford, pp 205–226

    Google Scholar 

  • Hardy OJ, Pavoine S (2012) Assessing phylogenetic signal with measurement error: a comparison of mantel tests, Blomberg et al’.s K, and phylogenetic distograms. Evolution 66(8):2614–2621

    Article  PubMed  Google Scholar 

  • Harmon L, Weir J, Brock C et al (2009) GEIGER: investigating evolutionary radiations. Bioinformatics 24(1):129–131

    Article  Google Scholar 

  • Helmus MR, Bland TJ, Williams CK et al (2007) Phylogenetic measures of biodiversity. Am Nat 169(3):E68–E83

    Article  PubMed  Google Scholar 

  • Herrera CM (1978) On the breeding distribution pattern of European migrant birds: MacArthur’s theme reexamined. Auk 95(3):496–509

    Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS et al (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43(1):227–248

    Article  Google Scholar 

  • Holmes RT, Sherry TW, Sturges FW (1986) Bird community dynamics in a temperate deciduous forest: long-term trends at Hubbard Brook. Ecol Monogr 56(3):201–220

    Article  Google Scholar 

  • Hurlbert AH, Haskell JP (2003) The effect of energy and seasonality on avian species richness and community composition. Am Nat 161:83–97

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93(870):145–159

    Article  Google Scholar 

  • Jetz W, Thomas GH, Joy JB et al (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  CAS  PubMed  Google Scholar 

  • Jetz W, Thomas GH, Joy JB et al (2014) Distribution and conservation of global evolutionary distinctness in birds. Curr Biol 24:919–930

    Article  CAS  PubMed  Google Scholar 

  • Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12(9):949–960

    Article  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26(11):1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Klingbeil BT, Willig MR (2015) Bird biodiversity assessments in temperate forest: the value of point count versus acoustic monitoring protocols. PeerJ 3:e973. doi:10.7717/peerj.973

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80(3):401–422

    Article  Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO et al (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170(2):271–283

    Article  PubMed  Google Scholar 

  • Lack D (1966) Population studies of birds. Oxford University Press, Oxford

    Google Scholar 

  • Lewontin RC (1969) The meaning of stability. Brookhaven Symp Biol 22:13–24

    CAS  PubMed  Google Scholar 

  • Lislevand T, Figuerola J, Székely T (2007) Avian body sizes in relation to fecundity, mating system, display behavior and resource sharing. Ecology 88:1605

    Article  Google Scholar 

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003

    Article  PubMed  Google Scholar 

  • Losos JB, Leal M, Glor RE et al (2003) Niche lability in the evolution of a Caribbean lizard community. Nature 424(6948):542–545

    Article  CAS  PubMed  Google Scholar 

  • Lovette IJ, Hochachka WM (2006) Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. Ecology 87(7):S14–S28

    Article  PubMed  Google Scholar 

  • MacArthur RH (1958) Population ecology of some warblers of northeastern coniferous forests. Ecology 39(4):599–619

    Article  Google Scholar 

  • MacAurthur RH (1972) Geographical ecology. Princeton University Press, Princeton

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Maddison WP, Maddison DR (2015) Mesquite: a modular system for evolutionary analysis. Version 3.04 http://mesquiteproject.org

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13(9):1085–1093

    Article  PubMed  Google Scholar 

  • Miles DB, Ricklefs RE (1984) The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65(5):1629–1640

    Article  Google Scholar 

  • Monkkonen M, Forsman JT (2002) Heterospecific attraction among forest birds: a review. Ornithol Sci 1(1):41–51

    Article  Google Scholar 

  • Monkkonen M, Helle P, Soppela K (1990) Numerical and behavioural responses of migrant passerines to experimental manipulation of resident tits (Parus spp.): heterospecific attraction in northern breeding bird communites? Oecologia 85(2):218–225

    Article  Google Scholar 

  • Mönkkönen M, Forsman JT, Bokma F (2006) Energy availability, abundance, energy-use and species richness in forest bird communities: a test of species-energy theory. Glob Ecol Biogeogr 15:290–302

    Google Scholar 

  • Mönkkönen M, Helle P, Niemi GJ et al (1997) Heterospecific attraction affects community structure and migrant abundances in northern breeding bird communities. Can J Zool 75(12):2077–2083

    Article  Google Scholar 

  • Morse DH (1989) American warblers: an ecological and behavioral perspective. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Münkemüller T, Lavergne S, Bzeznik B et al (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3(4):743–756

    Article  Google Scholar 

  • Münkemüller T, Gallien L, Lavergne S et al (2014) Scale decisions can reverse conclusions on community assembly processes. Glob Ecol Biogeogr 23(6):620–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Münkemüller T, Boucher FC, Thuiller W et al (2015) Phylogenetic niche conservatism—common pitfalls and ways forward. Funct Ecol 29(5):627–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Orme D (2013) The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5(2)

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884

    Article  CAS  PubMed  Google Scholar 

  • Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2011.1230

    Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758

    Article  PubMed  Google Scholar 

  • Poole AE (2005) The birds of North America online. Cornell Laboratory of Ornithology. http://bna.birds.cornell.edu/BNA/

  • Price TD, Hooper DM, Buchanan CD et al (2014) Niche filling slows the diversification of Himalayan songbirds. Nature 509(7499):222–225

    Article  CAS  PubMed  Google Scholar 

  • Pyle P (1997) Identification guide to North American birds. Part 1. Slate Creek Press, Bolinas

    Google Scholar 

  • Ralph CJ, Sauer JR, Droege S (1995) Monitoring bird populations by point counts. United States Forest Service General Technical Report PSW-GTR-149

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223

    Article  Google Scholar 

  • Revell LJ, Harmon LJ, Collar DC (2008) Phylogenetic signal, evolutionary process, and rate. Syst Biol 57(4):591–601

    Article  PubMed  Google Scholar 

  • Ricklefs RE (2011) Applying a regional community concept to forest birds of eastern North America. Proc Natl Acad Sci 108(6):2300–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlossberg S (2009) Site fidelity of shrubland and forest birds. The Condor 111(2):238–246

    Article  Google Scholar 

  • Schoener TW (1965) The evolution of bill size differences among sympatric congeneric species of birds. Evolution 19:189–213

    Article  Google Scholar 

  • Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90(8):2161–2170

    Article  PubMed  Google Scholar 

  • Swenson NG, Enquist BJ, Pither J et al (2006) The problem and promise of scale dependency in community phylogenetics. Ecology 87(10):2418–2424

    Article  PubMed  Google Scholar 

  • Swenson NG, Enquist BJ, Thompson J et al (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology 88(7):1770–1780

    Article  PubMed  Google Scholar 

  • Tan J, Pu Z, Ryberg WA et al (2012) Species phylogenetic relatedness, priority effects, and ecosystem functioning. Ecology 93(5):1164–1172

    Article  PubMed  Google Scholar 

  • Thomson RL, Forsman JT, Mönkkönen M (2003) Positive interactions between migrant and resident birds: testing the heterospecific attraction hypothesis. Oecologia 134(3):431–438

    Article  PubMed  Google Scholar 

  • Trisos CH, Petchey OL, Tobias JA (2014) Unraveling the interplay of community assembly processes acting on multiple niche axes across spatial scales. Am Nat 184(5):593–608

    Article  PubMed  Google Scholar 

  • Vamosi SM, Heard SB, Vamosi JC et al (2009) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18(4):572–592

    Article  CAS  PubMed  Google Scholar 

  • Vellend M, Srivastava DS, Anderson KM et al (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123(12):1420–1430

    Article  Google Scholar 

  • Weatherhead PJ, Forbes MRL (1994) Natal philopatry in passerine birds: genetic or ecological influences? Behav Ecol 5(4):426–433

    Article  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156(2):145–155

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Weiher E (2011) A primer of trait and functional diversity. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 175–193

    Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74(1):159–164

    Article  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Office of the Vice President for research (MRW), an IBA Small Grants Program Award from Audubon Connecticut (M.R.W., B.T.K., and S. Presley) and multiple intramural awards to B.T.K. [Center for Environmental Sciences and Engineering, Department of Ecology and Evolutionary Biology, and Connecticut Museum of Natural History at the University of Connecticut]. Partial funding for the synthetic portion of the project was provided by a National Science Foundation grant to S. Andelman and J. Parrish entitled “The Dimensions of Biodiversity Distributed Graduate Seminar” (DEB-1050680). We thank S. Adamson, R. Hall, J. Lech, and C. Roberts for assistance with acoustic libraries and fieldwork and S.J. Presley, the associate editor, and two anonymous reviewers for comments that improved the content and exposition of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Klingbeil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klingbeil, B.T., Willig, M.R. Community assembly in temperate forest birds: habitat filtering, interspecific interactions and priority effects. Evol Ecol 30, 703–722 (2016). https://doi.org/10.1007/s10682-016-9834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9834-7

Keywords

Navigation