Skip to main content
Log in

Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Aposematic (warning) coloration is a highly conspicuous trait that is found throughout the animal kingdom. In several aposematic species, warning signals have been co-opted for use in conspecific communication systems; for example, in the toxic and bright orange Solarte population of the strawberry poison frog (Oophaga [Dendrobates] pumilio), the brightness of male warning coloration serves as a sexual signal by both attracting females and repelling rivals. Here, we investigate correlations between bright male warning coloration and several physiological characteristics (e.g., circulating testosterone and carotenoids and noxious alkaloids in the skin), to gain insights into the mechanisms underlying the signal variation in this population and to inform hypotheses regarding the evolutionary stability of this trait. We find that although measures of male brightness (viewer-dependent or viewer-independent) do not correlate with two classic correlates of sexually selected traits (circulating testosterone and aggregate carotenoids in the skin), male reflectance does show a positive correlation with concentrations of two xanthophyll carotenoids. Total reflectance (a viewer-independent measure of male brightness) also shows a negative relationship with aggregate pumiliotoxin in the skin, which is considered one of the major classes of defensive alkaloids in this species. Because the alkaloids used in this species’ chemical defense are acquired from dietary sources, the magnitude of the reflectance intensity of a male’s warning signal can potentially provide viewers with reliable information regarding territory quality, health, and/or current condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad S (1992) Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem Syst Ecol 20:269–296

    Article  CAS  Google Scholar 

  • Andersson MB (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Bagnara JT (1976) Color change. In: Lofts B (ed) Physiology of the Amphibia, vol 3. Academic Press, New York, pp 1–52

    Chapter  Google Scholar 

  • Bagnara JT (2003) Enigmas of pterorhodin, a red melanosomal pigment of tree frogs. Pigm Cell Res 16:510–516

    Article  CAS  Google Scholar 

  • Berglund A, Bisazza A, Pilastro A (1996) Armaments and ornaments: an evolutionary explanation of traits of dual utility. Biol J Linn Soc 58:385–399

    Article  Google Scholar 

  • Bezzerides AL, McGraw KJ, Parker RS, Husseini J (2007) Elytra color as a signal of chemical defense in the Asian ladybird beetle Harmonia axyridis. Behav Ecol Sociobiol 61:1401–1408

    Article  Google Scholar 

  • Blount JD, Speed MP, Ruxton GD, Stephens PA (2009) Warning displays may function as honest signals of toxicity. Proc R Soc B 276:871–877

    Article  PubMed  Google Scholar 

  • Blount JD, Rowland HM, Drijfhout FP, Endler JA, Inger R, Sloggett JJ, Hurst GDD, Hodgson DJ, Speed MP (2012) How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. Funct Ecol 26:334–342

    Article  Google Scholar 

  • Cooper WE, Greenberg N (1992) Reptilian coloration and behavior. In: Gans C, Crews D (eds) Hormones, brain and behavior. University of Chicago Press, Chicago, pp 299–400

    Google Scholar 

  • Cortesi F, Cheney KL (2010) Conspicuousness is correlated with toxicity in marine opisthobranchs. J Evol Biol 23:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Cote J, Meylan S, Clobert J, Voituron Y (2010) Carotenoid-based coloration, oxidative stress and corticosterone in common lizards. J Exp Biol 213:2116–2124

    Article  CAS  PubMed  Google Scholar 

  • Crothers LR, Cummings ME (2013) Warning signal brightness variation: sexual selection may work under the radar or natural selection in populations of a polytypic poison frog. Am Nat 181:E116–E124

    Article  PubMed  Google Scholar 

  • Crothers LR, Cummings ME (2015) A multifunctional warning signal behaves as an agonistic status signal in a poison frog. Behav Ecol 26:560–568

    Article  Google Scholar 

  • Crothers L, Gering E, Cummings ME (2011) Aposematic signal variation predicts male-male interactions in a polymorphic poison frog. Evolution 65:599–605

    Article  PubMed  Google Scholar 

  • Cummings ME, Crothers LR (2013) Interacting selection diversifies warning signals in a polytypic frog: an examination with the strawberry poison frog. Evol Ecol 27:693–710

    Article  Google Scholar 

  • Daly JW, Myers CW (1967) Toxicity of Panamanian poison frogs (Dendrobates)—some biological and chemical aspects. Science 156:970–973

    Article  CAS  PubMed  Google Scholar 

  • Daly JW, Garraffo HM, Spande TF (1999) Alkaloids from amphibian skins. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Elsevier, Oxford, pp 1–147

    Google Scholar 

  • Daly JW, Kaneko T, Wilham J, Garraffo HM, Spande TF, Espinosa A, Donnelly MA (2002) Bioactive alkaloids of frog skin: combinatorial bioprospecting reveals that pumiliotoxins have an arthropod source. Proc Natl Acad Sci USA 99:13996–14001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod 68:1556–1575

    Article  CAS  PubMed  Google Scholar 

  • Darst CR, Cummings ME, Cannatella DC (2006) A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proc Natl Acad Sci USA 103:5852–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreher CE, Pröhl H (2014) Multiple sexual signals: calls over colors for mate attraction in an aposematic color-diverse poison frog. Front Ecol Evol. doi:10.3389/fevo.2014.00022

    Google Scholar 

  • Dreher CE, Cummings ME, Pröhl H (2015) An analysis of predator selection to affect aposematic coloration in a poison frog species. PLoS One 10:e0134628. doi:10.1371/journal.pone.0134628

    Article  Google Scholar 

  • Ducrest A, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510

    Article  PubMed  Google Scholar 

  • Emerson SB (2001) Male advertisement calls: behavioral variation and physiological processes. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, DC, pp 36–44

    Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Google Scholar 

  • Goyman W, Landys MM, Wingfield JC (2007) Distinguishing seasonal androgen responses from male-male androgen responsiveness—revisiting the challenge hypothesis. Horm Behav 51:463–476

    Article  Google Scholar 

  • Grether GF (2000) Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (Poecilia reticulata). Evolution 54:1712–1724

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  CAS  PubMed  Google Scholar 

  • Hegna RH, Saporito RA, Gerow KG, Donnelly MA (2011) Contrasting colors of an aposematic poison frog do not affect predation. Ann Zool Fenn 48:29–38

    Article  Google Scholar 

  • Hill GE, Johnson JD (2012) The vitamin A-redox hypothesis: a biochemical basis for honest signaling via carotenoid pigmentation. Am Nat 180:E127–E150

    Article  PubMed  Google Scholar 

  • Holen OH, Svennungsen TO (2012) Aposematism and the handicap principle. Am Nat 180:629–641

    Article  PubMed  Google Scholar 

  • Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature 411:302–305

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RA, Norris K (1993) Badges of status and the cost of aggression. Behav Ecol Sociobiol 32:127–134

    Article  Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Hafner, New York

    Google Scholar 

  • Kimball RT, Ligon JD (1999) Evolution of avian plumage dichromatism from a proximate perspective. Am Nat 154:182–193

    Article  Google Scholar 

  • Kime NM, Turner WR, Ryan MJ (2000) The transmission of advertisement calls in Central American frogs. Behav Ecol 11:71–83

    Article  Google Scholar 

  • Kodric-Brown A (1989) Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav Ecol Sociobiol 25:393–401

    Article  Google Scholar 

  • Lee TJ, Speed MP, Stephens PA (2011) Honest signaling and the uses of prey coloration. Am Nat 178:E1–E9

    Article  PubMed  Google Scholar 

  • Lynch KS, Crews D, Ryan MJ, Wilczynski W (2006) Hormonal state influences aspects of female mate choice in the Túngara frog (Physalaemus pustulosus). Horm Behav 49:450–457

    Article  CAS  PubMed  Google Scholar 

  • Maan ME, Cummings ME (2008) Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62:2334–2345

    Article  PubMed  Google Scholar 

  • Maan ME, Cummings ME (2009) Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proc Natl Acad Sci USA 106:19072–19077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maan ME, Cummings ME (2012) Poison frog colors are honest signals of toxicity, particularly for bird predators. Am Nat 17:E1–E14

    Article  Google Scholar 

  • Marler CA, Ryan MJ (1996) Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog. J Zool Lond 240:397–409

    Article  Google Scholar 

  • Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  • McGraw KJ (2005) The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim Behav 69:757–764

    Article  Google Scholar 

  • McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    Article  PubMed  Google Scholar 

  • McGraw KJ, Nolan PM, Crino OL (2006) Carotenoid accumulation strategies for becoming a colorful house finch: analyses of plasma and liver pigments in wild molting birds. Funct Ecol 20:678–688

    Article  Google Scholar 

  • Moore IT, Jessop TS (2003) Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm Behav 43:39–47

    Article  CAS  PubMed  Google Scholar 

  • Mosconi G, Palermo F, Carotti M, Kikuyama S, Yamamoto K, Polzonetti-Magni AM (2007) Neuroendocrine modulation of stress response in the anuran, Rana esculenta. Amphibia-Reptilia 27:401–408

    Article  Google Scholar 

  • Müller F (1879) Ituna and Thyridia: a remarkable case of mimicry in butterflies. Trans Entomol Soc Lond 1879:xx–xxix

    Google Scholar 

  • Nokelainen O, Hegna RH, Reudler JH, Lindstedt C, Mappes J (2011) Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proc R Soc B 279:257–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Obika M, Bagnara JT (1964) Pteridines as pigments in amphibians. Science 143:485–487

    Article  CAS  PubMed  Google Scholar 

  • Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514

    Article  CAS  PubMed  Google Scholar 

  • Owens IPF, Short RV (1995) Hormonal basis of sexual dimorphism in birds: implications for new theories of sexual selection. Trends Ecol Evol 10:44–47

    Article  CAS  PubMed  Google Scholar 

  • Richards CM (1982) The alteration of chromatophore expression by sex hormones in the Kenyan reed frog, Hyperolius viridiflavus. Gen Comp Endocr 46:59–67

    Article  CAS  PubMed  Google Scholar 

  • Rudh A, Qvarnström A (2013) Adaptive coloration in amphibians. Semin Cell Dev Biol 24:553–561

    Article  PubMed  Google Scholar 

  • Rudh A, Rogel B, Håstad O, Qvarnström A (2011) Rapid population divergence linked with co-variation between coloration and sexual display in strawberry poison frogs. Evolution 65:1271–1282

    Article  PubMed  Google Scholar 

  • Rudh A, Breed MF, Qvarnström A (2013) Does aggression and explorative behaviour decrease with lost warning coloration? Biol J Linn Soc 108:116–126

    Article  Google Scholar 

  • Ryan MJ, Keddy-Hector A (1992) Directional patterns of female mate choice and the role of sensory biases. Am Nat 139:S4–S35

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org/

  • Saks L, McGraw K, Hõrak P (2003) How feather colour reflects its carotenoid content. Funct Ecol 17:555–561

    Article  Google Scholar 

  • Santos JC, Cannatella DC (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci USA 108:6175–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saporito RA, Donnelly MA, Garraffo HM, Spande TF, Daly JW (2006) Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. J Chem Ecol 32:795–814

    Article  CAS  PubMed  Google Scholar 

  • Saporito RA, Zuercher R, Roberts M, Gerow KG, Donnelly MA (2007a) Experimental evidence for aposematism in the dendrobatid poison frog Oophaga pumilio. Copeia 4:1006–1011

    Article  Google Scholar 

  • Saporito RA, Donnelly MA, Jain P, Garraffo HM, Spande TF, Daly JW (2007b) Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50:757–778

    Article  CAS  PubMed  Google Scholar 

  • Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010) Sex-related differences in alkaloid chemical defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 26:389–397

    Article  PubMed  Google Scholar 

  • Sinervo B, Miles DB, Frankino WA, Klukowski M, DeNardo DF (2000) Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm Behav 38:222–233

    Article  CAS  PubMed  Google Scholar 

  • Speed MP, Ruxton GD (2007) How bright and how nasty: explaining diversity in warning signal strength. Evolution 61:623–635

    Article  PubMed  Google Scholar 

  • Speed MP, Ruxton GD, Blount JD, Stephens PA (2010) Diversification of honest signals in a predator-prey system. Ecol Lett 13:744–753

    Article  PubMed  Google Scholar 

  • Speed MP, Ruxton GD, Mappes J, Sherratt TN (2012) Why are defensive toxins so variable? An evolutionary perspective. Biol Rev 87:874–884

    Article  PubMed  Google Scholar 

  • Summers K, Clough ME (2001) The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proc Natl Acad Sci USA 98:6227–6232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers K, Symula R, Clough M, Cronin T (1999) Visual mate choice in poison frogs. Proc R Soc B 266:2141–2145

  • Summers K, Speed MP, Blount JD, Stuckert AMM (2015) Are aposematic signals honest? A review. J Evol Biol 28:1583–1599

    Article  CAS  PubMed  Google Scholar 

  • Ten Eyck GR, ul Haq A (2012) Arginine vasotocin activates aggressive calls during parental care in the Puerto Rican coquí frog, Eleutherodactylus coqui. Neurosci Lett 525:152–156

    Article  PubMed  Google Scholar 

  • Wallace AR (1867) Proc Entomol Soc Lond March 4th, IXXX–IXXXi

  • Weiss SL, Foerster K, Hudon J (2012) Pteridine, not carotenoid, pigments underlie the female-specific orange ornament of striped plateau lizards (Sceloporus virgatus). Comp Biochem Phys B 161:117–123

    Article  CAS  Google Scholar 

  • Whiting MJ, Nagy KA, Bateman PW (2003) Evolution and maintenance of social status signaling badges: experimental manipulations in lizards. In: Fox SF, McCoy JK, Baird TA (eds) Lizard social behavior. Johns Hopkins University Press, Baltimore, pp 47–82

    Google Scholar 

  • Whiting MJ, Stuart-Fox DM, O’Connor D, Firth D, Bennett NC, Blomberg SP (2006) Ultraviolet signals ultra-aggression in a lizard. Anim Behav 72:353–363

    Article  Google Scholar 

  • Wilczynski W, Lynch KS, O’Bryant EL (2005) Current research in amphibians: studies integrating endocrinology, behavior, and neurobiology. Horm Behav 38:440–450

    Article  Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AM, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846

    Article  Google Scholar 

Download references

Acknowledgments

This work complied with ANAM SE/A-112-08, SE/A-27-09, SEX/A-58-09, SE/A-30-11 and SE/A-36-12 permits, and UT 07092101 and AUP-2010-00139, Tulane 0382R and STRI 2008-03-12-05-2008 IACUC protocols. We thank Christina Buelow, Victoria Flores, Sara Mason and Anna Deasey for their exceptional field help, and Clyde and Wilson Stephens for the generous use of their property over the years. Special thanks to Hans Hofmann, Daniel Bolnick, Michael Ryan, Kyle Summers, William Wcislo, John Christy, and David Cannatella for their advice on experimental protocols. Finally, we thank two anonymous reviewers and the editors for helpful comments on previous versions of this manuscript. L.C. was supported by a UT EEB grant, NSF DDIG #IOS 1110503, a Smithsonian Tropical Research Institute A. Stanley Rand fellowship, an Animal Behavior Society Barlow Student Research Award, and an American Association of University Women fellowship. L.C. and M.C. were supported by a National Geographic Society Committee for Research and Exploration grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Crothers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crothers, L., Saporito, R.A., Yeager, J. et al. Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evol Ecol 30, 601–621 (2016). https://doi.org/10.1007/s10682-016-9830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9830-y

Keywords

Navigation