Skip to main content

Advertisement

Log in

Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Salt stress represents a major impediment to global wheat production. Development of wheat varieties that offer tolerance to salt stress would increase productivity. Here we report on the results of a genetic study of salt tolerance in bread wheat across multiple genetic backgrounds and environments, with the goal of identifying quantitative trait loci (QTLs) for 9 yield-related traits that are both genetic background independent and environmentally stable. Three RIL populations derived from crosses between a super salt tolerant landrace (Roshan) and 3 bread-wheat cultivars (Falat, Sabalan, Superhead#2) that vary in salt tolerance were phenotyped in three environments. Genetic maps were constructed for each RIL population and independent analyses of each population/environment combination revealed significant associations of 92 genomic regions with the traits evaluated. Joint analyses of yield-related traits across all populations revealed a strong genetic background effect, with no QTLs shared across all genetic backgrounds. Fifty-seven QTLs identified in the independent analysis co-localized with those in the joint analysis. Overall, only 3 QTLs displayed significant epistatic interactions. Additionally, a total of 67 QTLs were identified in QTL analysis across environments, two of these (QSPL.3A, QBYI.7B-1) were both stable and not reported previously. Such novel and stable QTLs may accelerate marker-assisted breeding of new highly productive and salt tolerant bread-wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113(8):1409–1420

    Article  CAS  Google Scholar 

  • Azadi A, Mardi M, Hervan EM, Mohammadi SA, Moradi F, Tabatabaee MT, Pirseyedi SM, Ebrahimi M, Fayaz F, Kazemi M (2015) QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Report 33(1):102–120

    Article  CAS  Google Scholar 

  • Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Breeding upland rice for drought resistance. J Sci Food Agric 88(6):927–939

    Article  CAS  Google Scholar 

  • Budak H, Shearman R, Parmaksiz I, Gaussoin R, Riordan T, Dweikat I (2004) Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108(2):328–334

    Article  CAS  Google Scholar 

  • Castillo A, Budak H, Varshney RK, Dorado G, Graner A, Hernandez P (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8(1):97

    Article  Google Scholar 

  • Courtois B, Shen L, Petalcorin W, Carandang S, Mauleon R, Li Z (2003) Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39. Euphytica 134(3):335–345

    Article  CAS  Google Scholar 

  • Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127(3):659–675

    Article  Google Scholar 

  • Cui T, He K, Chang L, Zhang X, Xue J, Liu J (2017) QTL mapping for leaf area in maize (Zea mays L.) under multi-environments. J Integr Agric 16(4):800–808

    Article  Google Scholar 

  • Dehdari A, Rezai A, Maibody SAM (2005) Salt tolerance of seedling and adult bread wheat plants based on ion contents and agronomic traits. Commun Soil Sci Plant Anal 36(15–16):2239–2253

    Article  CAS  Google Scholar 

  • FAO (2018) Online statistical database: food balance. Food and Agricultural Organization of the United Nations. Available online at http://www.fao.org/faostat/en/

  • Flowers T, Flowers S (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78(1–2):15–24

    Article  Google Scholar 

  • Flowers T, Yeo A (1995) Breeding for salinity resistance in crop plants: where next? Funct Plant Biol 22(6):875–884

    Article  Google Scholar 

  • Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099

    PubMed  PubMed Central  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106(6):1032–1040

    Article  CAS  Google Scholar 

  • Guan P, Lu L, Jia L, Kabir MR, Zhang J, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z (2018) Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci 9:529

    Article  Google Scholar 

  • Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125(4):671–683

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19(1):5–9

    Article  CAS  Google Scholar 

  • Huang X, Cöster H, Ganal M, Röder M (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106(8):1379–1389

    Article  CAS  Google Scholar 

  • Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric For 39(4):515–530

    Article  CAS  Google Scholar 

  • Jahani M, Nematzadeh G, Dolatabadi B, Hashemi SH, Mohammadi-Nejad G (2014) Identification and validation of functional markers in a global rice collection by association mapping. Genome 57(6):355–362

    Article  Google Scholar 

  • Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154(1–2):17–28

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12(1):172–175

    Article  Google Scholar 

  • Kumar N, Kulwal P, Balyan H, Gupta P (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19(2):163–177

    Article  Google Scholar 

  • Lafitte H, Ismail A, Bennett J (2004) Abiotic stress tolerance in rice for Asia: progress and the future. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A (eds) New directions for a diverse planet: proceedings of the 4th international crop science congress. Brisbane, Australia

  • Le Rouzic A, Álvarez-Castro JM (2008) Estimation of genetic effects and genotype-phenotype maps. Evolut Bioinform 4:EBO-S756

    Article  Google Scholar 

  • Leamy L, Workman M, Routman E, Cheverud J (2005) An epistatic genetic basis for fluctuating asymmetry of tooth size and shape in mice. Heredity 94(3):316

    Article  CAS  Google Scholar 

  • Li ZK, Pinson S, Park W (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145(2):453–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ribaut J-M, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116(2):243–260

    Article  Google Scholar 

  • Li S, Wang J, Zhang L (2015) Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS ONE 10(7):e0132414

    Article  Google Scholar 

  • Liu G, Jia L, Lu L, Qin D, Zhang J, Guan P, Ni Z, Yao Y, Sun Q, Peng H (2014) Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet 127(11):2415–2432

    Article  CAS  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

    Article  CAS  Google Scholar 

  • Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117(7):1077–1091

    Article  Google Scholar 

  • McFarland ML, Provin TL, Redmon LA, Boellstorff DE, McDonald AK, Stein LA, Wherley BG (2014) An index of salinity and boron tolerance of common native and introduced plant species in Texas. Texas A&M Agrilife Extension Service College Station, Texas

    Google Scholar 

  • Montooth KL, Marden JH, Clark AG (2003) Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. Genetics 165(2):623–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  Google Scholar 

  • Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S (2017) Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130(6):1081–1098

    Article  CAS  Google Scholar 

  • Nyholt DR, LaForge KS, Kallela M, Alakurtti K, Anttila V, Färkkilä M, Hämaläinen E, Kaprio J, Kaunisto MA, Heath AC (2008) A high-density association screen of 155 ion transport genes for involvement with common migraine. Hum Mol Genet 17(21):3318–3331

    Article  CAS  Google Scholar 

  • Poustini K, Siosemardeh A (2004) Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res 85(2–3):125–133

    Article  Google Scholar 

  • Prashant R, Kadoo N, Desale C, Kore P, Dhaliwal HS, Chhuneja P, Gupta V (2012) Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL × QTL and genotype × environment interactions. J Cereal Sci 56(2):432–439

    Article  CAS  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53(371):989–1004

    Article  CAS  Google Scholar 

  • Quarrie S, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes J, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57(11):2627–2637

    Article  CAS  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  Google Scholar 

  • Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for Coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114(7):1173–1183. https://doi.org/10.1007/s00122-007-0509-1

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123(2):283

    Article  Google Scholar 

  • Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586

    Article  CAS  Google Scholar 

  • Sardouie-Nasab S, Mohammadi-Nejad G, Zebarjadi A (2013) Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Mol Biol Rep 40(7):4661–4671

    Article  CAS  Google Scholar 

  • Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y (2017) A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Front Plant Sci 8:1412

    Article  Google Scholar 

  • Venuprasad R, Bool M, Quiatchon L, Atlin G (2012) A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet 124(2):323–332

    Article  CAS  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Ahmed HU, Cruz MTS, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12(1):89

    Article  CAS  Google Scholar 

  • Villalta I, Bernet G, Carbonell E, Asins M (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F 7 lines. Theor Appl Genet 114(6):1001–1017

    Article  CAS  Google Scholar 

  • Wang X, Pang Y, Zhang J, Zhang Q, Tao Y, Feng B, Zheng T, Xu J, Li Z (2014) Genetic background effects on QTL and QTL × environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. Crop J 2(6):345–357

    Article  Google Scholar 

  • Wei M, Fu J, Li X, Wang Y, Li Y (2009) Influence of dent corn genetic backgrounds on QTL detection for plant-height traits and their relationships in high-oil maize. J Appl Genet 50(3):225–234

    Article  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920

    Article  CAS  Google Scholar 

  • Wu Q-H, Chen Y-X, Zhou S-H, Fu L, Chen J-J, Xiao Y, Zhang D, Ouyang S-H, Zhao X-J, Cui Y (2015) High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817 × Beinong6. PLoS ONE 10(2):e0118144

    Article  Google Scholar 

  • Würschum T, Langer SM, Longin CFH (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128(5):865–874

    Article  Google Scholar 

  • Xu S, Jia Z (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175(4):1955–1963

    Article  CAS  Google Scholar 

  • Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169(2):187–196

    Article  Google Scholar 

  • Yao X, Wang J, Jin L, Wei W, Yang S, Zhang Y, Xu Z (2016) Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice (Oryza sativa L.). J Integr Agric 15(11):2437–2450

    Article  Google Scholar 

  • Zhang X, Yang S, Zhou Y, He Z, Xia X (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152(1):109–116

    Article  CAS  Google Scholar 

  • Zhang K, Tian J, Zhao L, Wang S (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genom 35(2):119–127

    Article  CAS  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52(11):996–1007

    Article  Google Scholar 

  • Zheng BS, Le Gouis J, Leflon M, Rong WY, Laperche A, Brancourt-Hulmel M (2010) Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet 121(8):1501–1517

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Mohammadi-Nejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 5224 kb)

Supplementary Figure 1

Schematic diagram of recombinant inbred line population development. Each individual is shown as a pair of homologous chromosomes (color coded by parent genome) in order to illustrate the genome of each RIL as a combination of different segments of its parental genomes (PDF 89 kb)

Supplementary Figure 2

Temperature and precipitation information of environments (Location-Year) for experiments (PDF 105 kb)

Supplementary Figure 3

Distribution of traits in 3 RIL populations across different environments. Plant height (PHT), spike length (SPL), spike weight (SPW), weight of kernels in plant (WKP), thousand kernel weight (TKW), spike per plant (SPP), grain yield per m2 (GYLD), biological yield per m2 (BYI), harvest index (HAI). (PDF 426 kb)

Supplementary Figure 4

Independent analysis, LOD profile of plant height (PHT), spike length (SPL), spike weight (SPW), weight of kernels in plant (WKP), thousand kernel weight (TKW), spikes per plant (SPP), grain yield per m2 (GYLD), biological yield per m2 (BYI), harvest index (HAI) in Roshan*Falat population at Kerman-2013, Kerman-2012, Yazd-2011 environments (PDF 359 kb)

Supplementary Figure 5

Independent analysis, LOD profile of plant height (PHT), spike length (SPL), spike weight (SPW), thousand kernel weight (TKW), grain yield per m2 (GYLD), biological yield per m2 (BYI), harvest index (HAI) in Roshan*Sabalan population at Kerman-2013, Kerman-2012, Yazd-2011 environments (PDF 327 kb)

Supplementary Figure 6

Independent analysis, LOD profile of plant height (PHT), spike length (SPL), thousand kernel weight (TKW), grain yield per m2 (GYLD), in Roshan*Superhead#2 population at Kerman-2013, Kerman-2012, Yazd-2011 environments (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani, M., Mohammadi-Nejad, G., Nakhoda, B. et al. Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica 215, 103 (2019). https://doi.org/10.1007/s10681-019-2426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2426-1

Keywords

Navigation