Skip to main content
Log in

Single nucleotide polymorphism markers linked to QTL for wheat yield traits

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Continuous improvement in grain yield is one of the major challenges for wheat (Triticum aestivum L.) breeding worldwide. This study characterized quantitative trait loci (QTL) underlying wheat grain yield and its components using a high-density genetic linkage map developed from a recombinant inbred line (RIL) population derived from ‘Ning7840’ × ‘Clark’. The map consisted of 594 single nucleotide polymorphism and 404 simple sequence repeat markers covering a genetic distance of 4225.7 cM. The RIL population was evaluated for grain yield (GY), spike number per m2 (SNPM), kernel number per spike (KNPS), and thousand-kernel weight (TKW) in three Oklahoma locations from 2001 to 2003. A total of 29 additive QTL (eight for GY, two for SNPM, five for KNPS, and 14 for TKW) were mapped on 13 chromosomes. Eight pairs of epistatic QTL were detected for different yield components: four for GY, two for KNPS, and two for TKW. Four additive QTL, including two for GY and two for KNPS, showed additive × environment interactions. QTL that were repeatable in multiple environments were identified for all traits except SNPM. Positive alleles were dispersed between the two parents for all traits, with ‘Clark’ contributing slightly more. Seven pleiotropic loci were co-localized for at least two traits. Interestingly, all co-localized loci overlapped for TKW, and four of them overlapped for GY. Thus, selecting QTL for TKW may simultaneously select for or against yield or other yield components in breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alam MM, Mace ES, van Oosterom EJ, Cruickshank A, Hunt CH, Hammer GL, Jordan DR (2014) QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering. Theor Appl Genet 127:2253–2266

    Article  CAS  PubMed  Google Scholar 

  • Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controllling scab resistance in wheat. Phytopathology 89:343–348

    Article  CAS  PubMed  Google Scholar 

  • Barton NH, Keightley PD (2002) Understanding quantitative genetic variation. Nat Rev Genet 3:11–21

    Article  CAS  PubMed  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies. Nat Rev Genet 5:618–625

    Article  CAS  PubMed  Google Scholar 

  • Carver BF, Rayburn AL (1994) Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance. Crop Sci 34:1505–1510

    Article  Google Scholar 

  • Cavanagh C, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira B, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell M, Sorrells M, Hayden M, Akhunov E (2013) Genomewide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Cui F, Zhao CH, Ding AM, Li J, Wang L, Li XF, Bao YG, Li JM, Wang HG (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675

    Article  PubMed  Google Scholar 

  • Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GY (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    Article  CAS  PubMed  Google Scholar 

  • Deschamps S, Campbell MA (2010) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570

    Article  CAS  Google Scholar 

  • Edae EA, Byrne PF, Haley SD (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807

    Article  CAS  PubMed  Google Scholar 

  • Goldringer I, Brabant P, Gallais A (1997) Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity 79:60–71

    Article  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Heidari B, Sayed-Tabatabaei BE, Saeidi G, Kearsey M, Suenaga K (2011) Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome 54:517–527

    Article  PubMed  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter weat variety and a synthetic wheat (Triticum aestivum.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Hyne V, Kearsey MJ, Martinez O, Gang W, Snape JW (1994) A partial genome assay for quantitative trait loci in wheat (Tritivum aestivum) using different analytical techniques. Theor Appl Genet 89:735–741

    Article  CAS  PubMed  Google Scholar 

  • Jannink J, Lorenz AJ (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Gen 9:166–177

    Article  CAS  Google Scholar 

  • Kato K, Miura S, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. Ι. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Lee S, Jun TH, Michel AP, Mian MAR (2014) SNP marker linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica. doi:10.1007/s10681-014-1252-8

    Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, Garcia del Moral LF, Demontis A, EL-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

  • Malosetti M, van Eeuwijk FA, Boer MP, Casas AM, Elía M, Moralejo M, Bhat PR, Ramsay L, Molina-Cano JL (2011) Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theor Appl Genet 122:1605–1611

    Article  PubMed Central  PubMed  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • Mason RE, Hays DB, Mondal S, Ibrahim AMH, Basnet BR (2013) QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica 194:243–259

    Article  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan HS, Gupta PK (2012) Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed 29:963–972

    Article  Google Scholar 

  • Miura H, Kuroshima M (1996) Homologous variation for loci controlling agronomic characters on group-5 chromosomes of wheat. SABRAO J 29:29–35

    Google Scholar 

  • Ohm HW, Shaner G, Forster JE, Patterson FL, Buechley G (1988) Registration of ‘Clark’ wheat. Crop Sci 28:1031–1032

    Article  Google Scholar 

  • Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS, Misra SC (2013) Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190:117–129

    Article  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta N, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupta V (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Wurschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Shirasawa S, Endo T, Nakagomi K, Yamaguchi M, Nishio T (2012) Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L. Theor Appl Genet 124:937–946

    Article  CAS  PubMed  Google Scholar 

  • Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang YK, Ciavarrella M (2007) Dissectiong gene × environmental effects on wheat yield via QTL and physiological analysis. Euphytica 154:401–408

    Article  Google Scholar 

  • Sourdille P, Cadalen T, Gay G, Gill B, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121:320–324

    Article  CAS  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Toth B, Galiba G, Feher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    Article  CAS  PubMed  Google Scholar 

  • Walsh B (2002) Quantitative genetics, genomics and future of plant breeding. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, Oxon, pp 23–32

    Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    Article  CAS  PubMed  Google Scholar 

  • Wang JK, Li HH, Zhang LY, Meng L (2012) QTL IciMapping version 3.2. http://www.isbreeding.net

  • Zhang KP, Tian JC, Zhao L, Wang SS (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Bai GH, Zhu CS, Yu JM, Carver BF (2010a) Genetic diversity, population sStructure, and linkage disequilibrium in U.S. elite winter wheat. Plant Genome 3:117–127

    Article  CAS  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang AM (2010b) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. Plant Biol 52:996–1007

    Google Scholar 

  • Zhang DL, Hao CY, Wang LF, Zhang XY (2012) Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta 236:1507–1517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This is contribution number 15-264-J from the Kansas Agricultural Experiment Station. This project was partly funded by the National Research Initiative Competitive Grants CAP project 2011-68002-30029 from the USDA National Institute of Food and Agriculture; and the Science and Technology Innovation Team Plan (2014KCT-25) from Shaanxi province, China. We also thank the International Wheat SNP Consortium for assembling the wheat 9 K iSelect chip. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Bai, G., Carver, B.F. et al. Single nucleotide polymorphism markers linked to QTL for wheat yield traits. Euphytica 206, 89–101 (2015). https://doi.org/10.1007/s10681-015-1475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1475-3

Keywords

Navigation