Skip to main content
Log in

Mapping of new quantitative trait loci (QTL) for resistance to Septoria tritici blotch in spring wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Septoria tritici blotch (STB), caused by Zymoseptoria tritici (synonyms: Mycosphaerella graminicola and Septoria tritici), is a devastating disease of wheat (Triticum aestivum L.) worldwide. STB can be managed by fungicide application and by host resistance. The use of fungicides is less effective due to the development of fungal populations resistant to commercially available fungicides. As a result, host plant resistance is considered as one of the best strategies of STB management. In our preliminary study, the spring wheat cultivar ‘Largo’ showed a high level of resistant to multiple isolates of Z. tritici. The main objective of this study was to identify quantitative trait loci (QTL) for STB resistance in Largo and DNA markers associated with QTL. The 118 F7 recombinant-inbred lines were developed from a cross between the synthetic hexaploid wheat Largo and the spring wheat susceptible line ND495 by single-seed descent. Disease severity in the mapping population was assessed at flag leaf stage 21 days after inoculation in the greenhouse at North Dakota State University, Fargo, ND in 2009 and 2010. Approximately, 2500 Diversity Arrays Technology® (DArT) markers were used for genetic mapping. Among them, 263 DArT markers were polymorphic and revealed the 37 linkage groups. The new putative QTL (QStb.2A) associated with STB resistance was flanked by the two DArT markers wPt_3896 and wPt_4197, (wPt_4555) and is mapped on chromosome 2A. Single marker analysis also detected three additional DArT markers associated with other QTLs; however, chromosomal locations of these markers are unknown. Our results indicated that the DArT markers identified in this study can be useful for marker-assisted selection in wheat breeding programs and for combing this novel QTL with other STB resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari TB, Anderson JM, Goodwin SB (2003) Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology 93(9):1158–1164

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Yang X, Cavaletto J, Hu X, Buechley G, Ohm H, Shaner G, Goodwin S (2004a) Molecular mapping of Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor Appl Genet 109(5):944–953

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Cavaletto JR, Dubcovsky J, Gieco JO, Schlatter AR, Goodwin SB (2004b) Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology 94(11):1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Wallwork H, Goodwin SB (2004c) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44(4):1403–1411

    Article  CAS  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113(8):1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Arraiano L, Brown J (2006) Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol 55(6):726–738

    Article  Google Scholar 

  • Arraiano L, Worland A, Ellerbrook C, Brown J (2001) Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat’Synthetic 6x’. Theor Appl Genet 103(5):758–764

    Article  CAS  Google Scholar 

  • Arraiano L, Chartrain L, Bossolini E, Slatter H, Keller B, Brown J (2007) A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol 56(1):73–78

    Article  CAS  Google Scholar 

  • Brading PA, Verstappen EC, Kema GH, Brown JK (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92(4):439–445

    Article  PubMed  Google Scholar 

  • Camacho-Casas M, Kronstad W, Scharen A (1995) Septoria tritici resistance and associations with agronomic traits in a wheat cross. Crop Sci 35(4):971–976

    Article  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Nat Acad Sci USA 110:8057–8062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chartrain L, Berry S, Brown J (2005a) Resistance of wheat line Kavkaz-K4500 L. 6. A. 4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology 95(6):664–671

    Article  CAS  PubMed  Google Scholar 

  • Chartrain L, Brading P, Brown J (2005b) Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat breeding programmes worldwide. Plant Pathol 54(2):134–143

    Article  CAS  Google Scholar 

  • Chartrain L, Joaquim P, Berry S, Arraiano L, Azanza F, Brown J (2005c) Genetics of resistance to Septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theor Appl Genet 110(6):1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Chartrain L, Sourdille P, Bernard M, Brown J (2009) Identification and location of Stb9, a gene for resistance to Septoria tritici blotch in wheat cultivars Courtot and Tonic. Plant Pathol 58(3):547–555

    Article  CAS  Google Scholar 

  • Chu C-G, Chao S, Friesen T, Faris J, Zhong S, Xu S (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breeding 25(2):327–338

    Article  CAS  Google Scholar 

  • Cools HJ, Fraaije BA (2008) Are azole fungicides losing ground against septoria wheat disease? resistance mechanisms in Mycosphaerella graminicola. Pest Manag Sci 64(7):681–684

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177(3):1889–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drabešová J, Ryšánek P, Brunner P, McDonald BA, Croll D (2013) Population genetic structure of Mycosphaerella graminicola and Quinone Outside Inhibitor (QoI) resistance in the Czech Republic. Eur J Plant Pathol 135(1):211–224

    Article  Google Scholar 

  • Eriksen L, Borum F, Jahoor A (2003) Inheritance and localisation of resistance to Mycosphaerella graminicola causing Septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor Appl Genet 107(3):515–527

    Article  CAS  PubMed  Google Scholar 

  • Eyal Z (1999) The Septoria tritici and Stagonospora nodorum blotch diseases of wheat. Eur J Plant Pathol 105(7):629–641

    Article  Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM, Van Ginkel M (1987) The septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Ghaffary SMT, Robert O, Laurent V, Lonnet P, Margalé E, van der Lee TA, Visser RG, Kema GH (2011) Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor Appl Genet 123(5):741–754

    Article  PubMed  Google Scholar 

  • Ghaffary SMT, Faris JD, Friesen TL, Visser RG, van der Lee TA, Robert O, Kema GH (2012) New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor Appl Genet 124(1):125–142

    Article  CAS  Google Scholar 

  • Goudemand E, Laurent V, Duchalais L, Ghaffary SMT, Kema GH, Lonnet P, Margalé E, Robert O (2013) Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Mol Breeding 32(3):563–584

    Article  CAS  Google Scholar 

  • Gurung S, Goodwin SB, Kabbage M, Bockus WW, Adhikari TB (2011) Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Phytopathology 101(10):1251–1259

    Article  CAS  PubMed  Google Scholar 

  • Gurung S, Hansen JM, Bonman JM, Gironella AIN, Adhikari TB (2012) Multiple disease resistance to four leaf spot diseases in winter wheat accessions from the USDA National Small Grains Collection. Crop Sci 52(4):1640–1650

    Article  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB (2014) Genome-wide association study reveals novel QTL associated with resistance to major foliar pathogens in spring wheat landraces. PLoS One 9(9):e108179

    Article  PubMed Central  PubMed  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24(23):2788–2789

    Article  CAS  PubMed  Google Scholar 

  • Joppa L, Williams N (1982) Registration of Largo, a greenbug resistant hexaploid wheat1 (Reg. No. GP 176). Crop Sci 22(4):901–902

    Article  Google Scholar 

  • Kelm C, Ghaffary SMT, Bruelheide H, Röder MS, Miersch S, Weber WE, Kema GH, Saal B (2012) The genetic architecture of seedling resistance to Septoria tritici blotch in the winter wheat doubled-haploid population Solitär × Mazurka. Mol Breeding 29(3):813–830

    Article  Google Scholar 

  • Kosambi D (1943) The estimation of map distances from recombination values. Ann Eugen 12(1):172–175

    Article  Google Scholar 

  • Liu Y, Zhang L, Thompson IA, Goodwin SB, Ohm HW (2013) Molecular mapping re-locates the Stb2 gene for resistance to Septoria tritici blotch derived from cultivar Veranopolis on wheat chromosome 1BS. Euphytica 190(1):145–156

    Article  CAS  Google Scholar 

  • McCartney C, Brûlé-Babel A, Lamari L, Somers D (2003) Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theor Appl Genet 107(7):1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Mergoum M, Singh P, Ali S, Elias E, Anderson J, Glover K, Adhikari T (2007) Reaction of elite wheat genotypes from the northern Great Plains of North America to Septoria diseases. Plant Dis 91(10):1310–1315

    Article  Google Scholar 

  • Mergoum M, Harilal V, Singh P, Adhikari T, Kumar A, Ghavami F, Elias E, Alamri M, Kianian S (2013) Genetic analysis and mapping of seedling resistance to Septoria tritici blotch in ‘Steele-ND’/‘ND 735′ bread wheat population. Cereal Res Commun 41:199–210

    Article  Google Scholar 

  • Orton ES, Deller S, Brown JK (2011) Mycosphaerella graminicola: from genomics to disease control. Mol Plant Pathol 12(5):413–424

    Article  PubMed  Google Scholar 

  • Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Gohari AM, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like species occurring on graminicolous hosts. Persoonia 26:57–69

  • Raman R, Milgate A, Imtiaz M, Tan M-K, Raman H, Lisle C, Coombes N, Martin P (2009) Molecular mapping and physical location of major gene conferring seedling resistance to Septoria tritici blotch in wheat. Mol Breeding 24(2):153–164

    Article  CAS  Google Scholar 

  • Rosielle A, Brown A (1979) Inheritance, heritability and breeding behaviour of three sources of resistance to Septoria tritici in wheat. Euphytica 28(2):385–392

    Article  Google Scholar 

  • Shaner G, Finney RE (1976) Weather and epidemics of Septoria leaf blotch of wheat. Infection 5(6):8

    Google Scholar 

  • Simon MR, Khlestkina EK, Castillo NS, Börner A (2010) Mapping quantitative resistance to Septoria tritici blotch in spelt wheat. Eur J Plant Pathol 128(3):317–324

    Article  Google Scholar 

  • Simón M, Ayala F, Cordo C, Röder M, Börner A (2004) Molecular mapping of quantitative trait loci determining resistance to Septoria tritici blotch caused by Mycosphaerella graminicola in wheat. Euphytica 138(1):41–48

    Article  Google Scholar 

  • Singh P, Mergoum M, Ali S, Adhikari T, Elias E, Hughes G (2006) Identification of new sources of resistance to tan spot, stagonospora nodorum blotch, and Septoria tritici blotch of wheat. Crop Sci 46(5):2047–2053

    Article  Google Scholar 

  • Torriani SF, Brunner PC, McDonald BA, Sierotzki H (2009) QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag Sci 65(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Wilson R (1985) Inheritance of resistance to Septoria tritici in wheat. ARS-US Department of Agriculture Agricultural Research Service, Boca Raton

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from North Dakota Wheat Commission, and the State Board of Agricultural Research and Education, North Dakota, and USDA-ARS specific cooperative agreement 58-5366-0-133. We thank Steven Xu for providing the mapping population and Jana Hansen for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tika B. Adhikari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 136 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, T.B., Mamidi, S., Gurung, S. et al. Mapping of new quantitative trait loci (QTL) for resistance to Septoria tritici blotch in spring wheat (Triticum aestivum L.). Euphytica 205, 699–706 (2015). https://doi.org/10.1007/s10681-015-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1393-4

Keywords

Navigation