Skip to main content
Log in

Research prioritization using hypothesis maps

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

This work presents a method to aid in the prioritization of research within a scientific domain. The domain is encoded into a directed network in which nodes represent factors in the domain, and directed links between nodes represent known or hypothesized causal relationships between the factors. Each link is associated with a numeric weight that indicates the degree of understanding of that hypothesis. Increased understanding of hypotheses is represented by higher weights on links in the network. Research is prioritized by calculating optimal allocations of limited research resources across all links in the network that maximize the degree of overall knowledge of the research domain. We quantify the level of knowledge of individual nodes (factors) in the map by a network centrality measure that reflects in dependencies between knowledge level of nodes and the knowledge level of their parent nodes in the map. We analyzed a funded research proposal concerning the fate and transport of nanomaterials in the environment to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Auffan M, Pedeutour M , Rose J , Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J et al. (2010) Structural degradation at the surface of a tio2-based nanomaterial used in cosmetics. Environ Sci Technol 44(7):2689–2694

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner M, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157(4):1127–1133

    Article  CAS  Google Scholar 

  • Axelrod RM (1976) Structure of decision: the cognitive maps of political elites. Princeton University Press, Princeton

    Google Scholar 

  • Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23(3):191–201

    Article  Google Scholar 

  • Bougon M, Weick K, Binkhorst D (1977) Cognition in organizations: an analysis of the Utrecht Jazz Orchestra. Adm Sci Q 22(4):606–639

    Google Scholar 

  • Canis L, Linkov I, Seager TP (2010) Application of stochastic multiattribute analysis to assessment of single walled carbon nanotube synthesis processes. Environ Sci Technol 44(22):8704–11

    Article  CAS  Google Scholar 

  • Chang X, Vikesland PJ (2009) Effects of carboxylic acids on nc60 aggregate formation. Environ Pollut 157(4):1072–1080

    Article  CAS  Google Scholar 

  • Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115(11):4425–4432

    Article  CAS  Google Scholar 

  • Dale AL, Lowry GV, Casman EA (2013) Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol 47(22):12920–12928

    Article  CAS  Google Scholar 

  • Davis JM, Wang A, Shtakin JA (2010) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. US EPA, Research Triangle Park, NC

    Google Scholar 

  • Eden C, Ackermann F (1992) The analysis of cause maps. J Manage Stud 29(3):309–324

    Article  Google Scholar 

  • Erbs JJ, Berquó TS, Reinsch BC, Lowry GV, Banerjee SK, Lee PR (2010) Reductive dissolution of arsenic-bearing ferrihydrite. Geochim Cosmochim Acta 74(12):3382–3395

    Article  CAS  Google Scholar 

  • Feller I, Stern PC (eds) (2007) A strategy for assessing science: behavioral and social research on aging. The National Academies Press, Washington, DC

    Google Scholar 

  • Fischhoff B (2000) Scientific management of science? Policy Sci 33(1):73–87

    Google Scholar 

  • Ford JD, Hegarty WH (1984) Decision makers’ beliefs about the causes and effects of structure: an exploratory study. Acad Manag J 27(2):271–291

    Article  Google Scholar 

  • French RA, Monsegue N, Murayama M, Hochella Jr. MF (2013) The structure and transformation of the nanomineral schwertmannite: a synthetic analog representative of field samples. Phys Chem Miner 1–10

  • Ganapathiraju MK, Orii N (2013) Research prioritization through prediction of future impact on biomedical science: a position paper on inference-analytics. GigaScience 2(11)

  • Golub GH, van Van Loan CF (1983) Matrix computations. John Hopkins University Press, Baltimore

    Google Scholar 

  • Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045

    Article  CAS  Google Scholar 

  • Information System Laboratories (2003) Formal methods of decision analysis applied to prioritization of research and other topics, nureg/cr-6833. Technical report

  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45(9):3902–3908

    Article  CAS  Google Scholar 

  • Kajikawa Y, Takeda Y, Matsushima K (2010) Computer-assisted roadmapping: a case study in energy research. Foresight 12(2):4–15

    Article  Google Scholar 

  • Kent RD, Vikesland PJ (2012) Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ Sci Technol 46(13):6977–6984

    Article  CAS  Google Scholar 

  • Kirschling TL, Golas PL, Unrine JM, Matyjaszewski K, Gregory KB, Lowry GV, Robert DT (2011) Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ Science Technol 45(12):5253–5259

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  • Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24(1):65–75

    Google Scholar 

  • Kostoff RN, Schaller RR (2001) Science and technology roadmaps. IEEE Trans Eng Manage 48(2):132–143

    Article  Google Scholar 

  • Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, Auffan M, Rose J, Bottero J-Y (2010) Aging of tio< sub> 2</sub> nanocomposites used in sunscreen. dispersion and fate of the degradation products in aqueous environment. Environ Pollut 158(12):3482–3489

    Article  CAS  Google Scholar 

  • Levard C, Matt HE, Lowry GV, Brown Jr. GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 46(13):6900–6914

    Article  CAS  Google Scholar 

  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown Jr. GE, Tanguay RL, Di Giulio RT et al. (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448

    Article  CAS  Google Scholar 

  • Levard C, Mitra S, Yang T, Jew A, Badireddy AR, Lowry GV, Brown GE (2013) The effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47(11):5738–5745

    Google Scholar 

  • Levard C, Reinsch BC, Marc MF, Oumahi C, Lowry GV, Brown Jr. GE (2011) Sulfidation processes of pvp-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266

    Article  CAS  Google Scholar 

  • Li Z, Greden K, Alvarez P, Gregory KB, Lowry GV (2010) Adsorbed polymer and nom limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44(9):3462–3467

    Google Scholar 

  • Louie SM, Tilton RD, Lowry GV (2013) Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ Sci Technol 47(9):4245–4254

    Article  CAS  Google Scholar 

  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M et al. (2012) Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899

    Article  CAS  Google Scholar 

  • Ma R, Levard C, Marc MF, Brown Jr. GE , Lowry GV (2013) Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ Sci Technol 47(6):2527–2534

    Article  CAS  Google Scholar 

  • McLinden D (2013) Concept maps as network data: analysis of a concept map using the methods of social network analysis. Eval Program Plann 36(1):40–8

    Article  Google Scholar 

  • Morgan K (2005) Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk analysis: an official publication. Soc Risk Anal 25(6):1621–35

    Article  Google Scholar 

  • Narayanan VK, Armstrong DJ (2005) Causal mapping for research in information technology. IGI Global, Hershey, PA

  • National Research Council (NRC) (2012) Committee to develop a research strategy for environmental, health, and safety aspects of engineered nanomaterials. A research strategy for environmental, health, and safety aspects of engineered nanomaterials

  • Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70(5):56131

    Article  CAS  Google Scholar 

  • NSET/NEHI (2011) NNI Environmental health, and safety research strategy. Technical report, National Science and Technology Council Committee on Technology, Subcommittee on Nanoscale Science, Engineering, and Technology

  • Özesmi U, Özesmi SL (2004) Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecol Model 176(1–2):43–64

    Article  Google Scholar 

  • Phenrat T, Long TC, Lowry GV, Veronesi B (2008) Partial oxidation (aging) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43(1):195–200

    Article  Google Scholar 

  • Prigent M, Fontenelle G, Rochet M, Trenkel VM (2008) Using cognitive maps to investigate fishers’ ecosystem objectives and knowledge. Ocean Coast Manag 51(6):450–462

    Article  Google Scholar 

  • Rebodos RL, Vikesland PJ (2010) Effects of oxidation on the magnetization of nanoparticulate magnetite. Langmuir 26(22):16745–16753

    Article  CAS  Google Scholar 

  • Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown Jr. GE , Lowry GV (2012) Sulfidation of silver nanoparticles decreases escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000

    Article  CAS  Google Scholar 

  • Reinsch BC, Forsberg B, Lee PR, Kim CS, Lowry GV (2010) Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol 44(9):3455–3461

    Article  CAS  Google Scholar 

  • Tiwari AJ, Marr LC (2010) The role of atmospheric transformations in determining environmental impacts of carbonaceous nanoparticles. J Environ Qual 39(6):1883–1895

    Article  CAS  Google Scholar 

  • Trochim WMK (1989) An introduction to concept mapping for planning and evaluation. Eval Program Plann 12:1–16

    Article  Google Scholar 

  • Wiesner MR, Lowry GV, Casman E, Bertsch PM, Matson CW, Di GRT, Liu J, Hochella Jr. MF (2011) Meditations on the ubiquity and mutability of nano-sized materials in the environment. ACS Nano 5(11):8466–8470

    Article  CAS  Google Scholar 

  • Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46(22):12687–12696

    Article  CAS  Google Scholar 

  • Yokota F, Thompson KM (2004) Value of information analysis in environmental health risk management decisions: past, present, and future. Risk analysis: an official publication. Soc Risk Anal 24(3):635–650

    Article  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the Department of Education under Grant Award P200A090055-11, the National Science Foundation and the Environmental Protection Agency NSF Cooperative Agreement EF-0830093, the Center for the Environmental Implications of NanoTechnology (CEINT), and Carnegie Mellon University. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the ED, NSF or the EPA. This work has not been subjected to EPA review, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Casman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (32 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masinter, A., Small, M. & Casman, E. Research prioritization using hypothesis maps. Environ Syst Decis 34, 49–59 (2014). https://doi.org/10.1007/s10669-014-9489-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-014-9489-2

Keywords

Navigation