Skip to main content
Log in

Simultaneous measurements of dissolved CH4 and H2 in wetland soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biogeochemical processes in wetland soils are complex and are driven by a microbiological community that competes for resources and affects the soil chemistry. Depending on the availability of various electron acceptors, the high carbon input to wetland soils can make them important sources of methane production and emissions. There are two significant pathways for methanogenesis: acetoclastic and hydrogenotrophic methanogenesis. The hydrogenotrophic pathway is dependent on the availability of dissolved hydrogen gas (H2), and there is significant competition for available H2. This study presents simultaneous measurements of dissolved methane and H2 over a 2-year period at three tidal marshes in the New Jersey Meadowlands. Methane reservoirs show a significant correlation with dissolved organic carbon, temperature, and methane emissions, whereas the H2 concentrations measured with dialysis samplers do not show significant relationships with these field variables. Data presented in this study show that increased dissolved H2 reservoirs in wetland soils correlate with decreased methane reservoirs, which is consistent with studies that have shown that elevated levels of H2 inhibit methane production by inhibiting propionate fermentation, resulting in less acetate production and hence decreasing the contribution of acetoclastic methanogenesis to the overall production of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achtnich, C., Friedhelm, B., & Conrad, R. (1995). Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils Biology and Fertility of Soils, 19(1), 65–72.

    Article  CAS  Google Scholar 

  • Altor, A., & Mitsch, W. J. (2006). Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering, 28(3), 224–234.

    Article  Google Scholar 

  • Bridgham, S., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1325–1346.

    Article  Google Scholar 

  • Brook E, Archer D, Dlugokencky E, Frolking S, Lawrence D (2008). Potential for abrupt changes in atmospheric methane. Abrupt climate change: A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. U.S. Geological Survey, Reston, VA, 360–452.

  • Brown, D. G., Komlos, J., & Jaffé, P. R. (2005). Simultaneous utilization of acetate and hydrogen by Geobacter sulfurreducens and implications for use of hydrogen as an indicator of redox conditions. Environmental Science & Technology, 39(9), 3069–3076.

    Article  CAS  Google Scholar 

  • Chin, K. J., & Conrad, R. (1995). Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbio. Eco., 18, 85–102.

    Article  CAS  Google Scholar 

  • Conrad, R., Bak, F., Seitz, H. J., Thebrath, B., Mayer, H. P., & Schutz, H. (1989). Hydrogen turnover by psychotropic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbio. Ecology, 62, 285–294.

    Article  CAS  Google Scholar 

  • Conrad, R., Klose, M., & Claus, P. (2002). Pathway of CH4 formation in anoxic rice field soil and rice roots determined by 13C-stable isotope fractionation. Chemosphere, 47(8), 797–806.

    Article  CAS  Google Scholar 

  • ElBishlawi, H., Shin, J. Y., & Jaffe, P. R. (2013). Trace metal dynamics in the sediments of a constructed and natural urban tidal marsh: the role of iron, sulfide, and organic complexation. Ecological Engineering, 58, 133–141.

    Article  Google Scholar 

  • Glissmann, K., & Conrad, R. (2000). Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiology Ecology, 31(2), 117–126.

    Article  CAS  Google Scholar 

  • Glissman, K., Chin, K. J., Casper, P., & Conrad, R. (2004). Methanogenic pathway and archael community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Microbial Ecology, 48, 389–399.

    Article  CAS  Google Scholar 

  • Hesslein, R. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography, 21(6), 912–914.

    Article  CAS  Google Scholar 

  • Karadagli, F., & Rittmann, B. E. (2007). Thermodynamic and kinetic analysis of the H2 threshold for Methanobacterium bryantii M.o.H. Biodegradation, 18, 439–452.

    Article  CAS  Google Scholar 

  • Komlos, J., & Jaffé, P. R. (2004). Effect of iron bioavailability on dissolved hydrogen concentrations during microbial iron reduction. Biodegradation, 15(5), 315–325.

    Article  CAS  Google Scholar 

  • Laanbroek, H. J. (2009). Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105(1), 141–153.

    Article  Google Scholar 

  • Li, T., Huang, Y., Zhang, W., & Song, C. (2010). CH4MODwetland: a biogeophysical model for simulating methane emissions from natural wetlands. Ecological Modeling, 221(4), 666–680.

    Article  CAS  Google Scholar 

  • Liu, F., & Conrad, R. (2011). Chemolithotrophic acetogenic H2/CO2 utilization in Italian rice field soil. The ISME Journal, 5, 1526–1539.

    Article  CAS  Google Scholar 

  • Macdonald, L., Paull, J. S., & Jaffé, P. R. (2012). Enhanced semipermanent dialysis samplers for long-term environmental monitoring in saturated sediments. Environmental Monitoring and Assessment, 185(5), 3613–3624.

    Article  Google Scholar 

  • Pal, D., & Jaffé, P. R. (2016). Modeling the inhibition of dissolved H2 on propionate fermentation and methanogenesis in wetland sediments. Ecological Modelling, 322, 115–123.

    Article  CAS  Google Scholar 

  • Pal, D. S., Reid, M. C., & Jaffé, P. R. (2014). Impact of hurricane sandy on CH 4 released from vegetated and unvegetated wetland microsites. Environmental Science & Technology Letters, 1(9), 372–375.

    Article  CAS  Google Scholar 

  • Reid, M. C., & Jaffé, P. R. (2012). Gas-phase and transpiration-driven mechanisms for volatilization through wetland macrophytes. Environmental Science & Technology, 46(10), 5344–5352.

    Article  CAS  Google Scholar 

  • Reid, M. C., & Jaffé, P. R. (2013). A push–pull test to measure root uptake of volatile chemicals from wetland soils. Environmental Science & Technology, 47(7), 3190–3198.

  • Reid, M. C., Tripathee, R., Schäfer, K. V. R., & Jaffé, P. R. (2013). Tidal marsh methane dynamics: difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research – Biogeosciences, 118, 1802–1813.

    Article  CAS  Google Scholar 

  • Schutz, H., Conrad, R., Goodwin, S., & Sieler, W. (1988). Emission of hydrogen from deep and shallow freshwater environments. Biogeochemisty, 5, 295–311.

    Article  Google Scholar 

  • Whiting, G. J., & Chanton, J. P. (1993). Primary production control of methane emission from wetlands. Nature, 364, 794–795.

    Article  CAS  Google Scholar 

  • Whiting, G. J., & Chanton, J. P. (2001). Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus, B53(5), 521–528.

    Google Scholar 

  • Xu, S., Jaffé, P. R., & Mauzerall, D. L. (2007). A process-based model for methane emission from flooded rice paddy systems. Ecological Modelling, 205, 475–491.

    Article  CAS  Google Scholar 

  • Yamamoto, A., Hirota, M., Suzuki, S., Oe, Y., Zhang, P., & Mariko, S. (2009). Effects of tidal fluctuations on CO2 and CH4 fluxes in the littoral zone of a brackish-water Lake. Limnology, 10(3), 229–237.

    Article  CAS  Google Scholar 

  • Yavitt, J. B. (2010). Cryptic wetlands. Nature Geoscience, 3, 749–750.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the CBET-1133074, CBET 1033639, CBET 1133275, CBET 1311713, CBET 1033451, CBET 1311547, and CBET-1133281, NSF Collaborative Research: RAPID Award no. 1311796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Jaffé.

Appendix

Appendix

Fig.7
figure 7

Schematic of the dialysis sample “peepers” (Macdonald et al. 2012)

Fig. 8
figure 8

Individual H2 fluxes from every site and vegetation plotted versus month demonstrating that H2 emissions occur throughout the year

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D.S., Tripathee, R., Reid, M.C. et al. Simultaneous measurements of dissolved CH4 and H2 in wetland soils. Environ Monit Assess 190, 176 (2018). https://doi.org/10.1007/s10661-018-6552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6552-3

Keywords

Navigation