Skip to main content
Log in

Optimizing booster chlorination in water distribution networks: a water quality index approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The optimization of chlorine dosage and the number of booster locations is an important aspect of water quality management in distribution networks. Booster chlorination helps to maintain uniformity and adequacy of free residual chlorine concentration, essential for safeguarding against microbiological contamination. Higher chlorine dosages increase free residual chlorine concentration but generate harmful by-products, in addition to taste and odor complaints. It is possible to address these microbial, chemical, and aesthetic water quality issues through free residual chlorine concentration. Estimating a water quality index (WQI) based on regulatory chlorine thresholds for microbial, chemical, and aesthetics criteria can help engineers make intelligent decisions. An innovative scheme for maintaining adequate residual chlorine with optimal chlorine dosages and numbers of booster locations was established based on a proposed WQI. The City of Kelowna (BC, Canada) water distribution network served to demonstrate the application of the proposed scheme. Temporal free residual chlorine concentration predicted with EPANET software was used to estimate the WQI, later coupled with an optimization scheme. Preliminary temporal and spatial analyses identified critical zones (relatively poor water quality) in the distribution network. The model may also prove useful for small or rural communities where free residual chlorine is considered as the only water quality criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agus, E., Voutchkov, N., & Sedlak, D. (2009). Disinfection by-products and their potential impact on the quality of water produced by desalination systems: a literature review. Desalination 237(1–3):214–237. doi: 10.1016/j.desal.2007.11.059.

    Google Scholar 

  • Al-Jasser, A. O. (2007). Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect. Water Research, 41(2), 387–396. doi:10.1016/j.watres.2006.08.032.

    Article  CAS  Google Scholar 

  • Boccelli, D. L., Tryby, M. E., Uber, J. G., & Summers, R. S. (2003). A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Research, 37(11), 2654–2666. doi:10.1016/S0043-1354(03)00067-8.

    Article  CAS  Google Scholar 

  • Bond, T., Goslan, E., Parsons, S., & Jefferson, B. (2011). Treatment of disinfection by-product precursors. Environmental Technology 32(1):1–25. Available from http://www.informaworld.com/index/932871122.pdf. Accessed 20 May 2011

    Google Scholar 

  • Brown, D., Bridgeman, J., & West, J. R. (2011). Predicting chlorine decay and THM formation in water supply systems. Reviews in Environmental Science and Bio/Technology, 10(1), 79–99. doi:10.1007/s11157-011-9229-8.

    Article  CAS  Google Scholar 

  • Carrico, B., & Singer, P. C. (2010). Impact of booster chlorination on chlorine decay and THM production: simulated analysis. October (October 2009), 2005–2010.

  • Carrico, B., & Singer, P. C. (2009). Impact of booster chlorination on chlorine decay and them production: simulated analysis. Journal of Environmental Engineering, 135(10), 928. doi:10.1061/(ASCE)0733-9372(2009)135:10(928).

    Article  CAS  Google Scholar 

  • Courtis, B., West, J., & Bridgeman, J. (2009). Temporal and spatial variations in bulk chlorine decay within a water supply system. Journal of Environmental Engineering, 135(3), 147. doi:10.1061/(ASCE)0733-9372(2009)135:3(147).

    Article  CAS  Google Scholar 

  • Cozzolino, L., Pianese, D., & Pirozzi, F. (2005). Control of DBPs in water distribution systems through optimal chlorine dosage and disinfection station allocation. Desalination, 176(1–3), 113–125. doi:10.1016/j.desal.2004.10.021.

    Article  CAS  Google Scholar 

  • Fisher, I., Kastl, G., & Sathasivan, A. (2011). Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water research, 45(16), 4896–4908. Elsevier Ltd. doi: 10.1016/j.watres.2011.06.032.

  • Gibbs, M. S., Dandy, G. C., & Maier, H. R. (2010). Calibration and optimization of the pumping and disinfection of a real water supply system. Journal of Water Resources Planning and Management, 136(4), 493. doi:10.1061/(ASCE)WR.1943-5452.0000060.

    Article  Google Scholar 

  • Gibbs, M., Maier, H. R., & Dandy, G. C. (2010). Comparison of genetic algorithm parameter setting methods for chlorine injection optimization. Journal of Water Resources Planning and Management, 136(2), 288. doi:10.1061/(ASCE)WR.1943-5452.0000033.

    Article  Google Scholar 

  • Hallam, N. B., Hua, F., West, J. R., Forster, C. F., & Simms, J. (2003). Bulk decay of chlorine in water distribution systems. Journal of Water Resources Planning and Management, 129(1), 78. doi:10.1061/(ASCE)0733-9496(2003)129:1(78).

    Article  Google Scholar 

  • Hallam, N B, West, J R, Forster, C F, Powell, J C, & Spencer, I. (2002). The decay of chlorine associated with the pipe wall in water distribution systems. Water Research 36(14):3479–88. Available from http://www.ncbi.nlm.nih.gov/pubmed/12230193.

  • HealthCanada. (2009). Guidelines for Canadian Drinking Water Quality. Ottawa, Ontario

  • Hernandez-Castro, S. (2007). Two-stage stochastic approach to the optimal location of booster disinfection stations. Industrial and Engineering Chemistry Research, 46(19), 6284–6292. doi:10.1021/ie070141a.

    Article  Google Scholar 

  • Huang, J. J., & McBean, E. A. (2007). Using Bayesian statistics to estimate the coefficients of a two- component second-order chlorine bulk decay model for a water distribution system. Water Research, 41(2), 287–294. doi:10.1016/j.watres.2006.10.027.

    Article  CAS  Google Scholar 

  • Hwang, B., & Jaakkola, J. J. K. (2003). Water chlorination and birth defects: a systematic review and meta-analysis. Archives of Environmental Health 58(2):83–91. Available from http://heldref-publications.metapress.com/index/f1801r76106093x3.pdf. Accessed 20 May 2011

  • Jabari Kohpaei, A., & Sathasivan, A. (2011). Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development. Chemical Engineering Journal 171(1):232–241. doi: 10.1016/j.cej.2011.03.034.

    Google Scholar 

  • Yang, J. Y., Goodrich, J. A., Clark, R. M., & Li, S. Y. (2008). Modeling and testing of reactive contaminant transport in drinking water pipes: chlorine response and implications for online contaminant detection. Water Research, 42(6–7), 1397–1412. doi:10.1016/j.watres.2007.10.009.

    Article  CAS  Google Scholar 

  • Kang, D., & Lansey, K. (2010). Real-time optimal valve operation and booster disinfection for water quality in water distribution systems. Journal of Water Resources Planning and Management, 136(4), 463. doi:10.1061/(ASCE)WR.1943-5452.0000056.

    Article  Google Scholar 

  • Khan, F., Husain, T., & Lumb, A. (2003). Water quality evaluation and trend analysis in selected watersheds of the Atlantic region of Canada. Environmental Monitoring and Assessment 88(1):221–248. Available from http://www.springerlink.com/index/H7183287VR00814V.pdf. Accessed 12 December 2011

  • Lansey, K., Pasha, F., Pool, S., Elshorbagy, W., & Uber, J. (2007). Locating satellite booster disinfectant stations. Journal of Water Resources Planning and Management, 133(4), 372. doi:10.1061/(ASCE)0733-9496(2007)133:4(372).

    Article  Google Scholar 

  • Legay, C., Rodriguez, Manuel J, Sérodes, J. B., & Levallois, P. (2010). Estimation of chlorination by-products presence in drinking water in epidemiological studies on adverse reproductive outcomes: a review. The Science of the Total Environment 408(3):456–472. doi: 10.1016/j.scitotenv.2009.10.047.

  • Loureiro, D. (2002). The influence of transients in characteristic hydraulic and water quality parameters. M.Sc. thesis. IST, Lisbon (in Portuguese).

  • Lumb, A., Halliwell, D., & Sharma, T. (2006). Application of CCME Water Quality Index to monitor water quality: A case study of the Mackenzie River basin, Canada. Environmental Monitoring and Assessment 113(1):411–429. Available from http://www.springerlink.com/index/K545361V22347718.pdf. Accessed 12 December 2011

  • NHMRC. (2004). Australia drinking water guidelines: fact sheets—inorganic chemicals. National Health and Medical Research Council. Available from www.nhmrc.gov.au/publications/synopses/_files/adwg_11_06_fact_sheets.pdf. Accessed 24 September 2007.

  • Nieuwenhuijsen, M. J., Toledano, M. B., & Elliott, P. (2000). Uptake of chlorination disinfection by-products; a review and a discussion of its implications for exposure assessment in epidemiological studies. Journal of Exposure Analysis and Environmental Epidemiology 10(6 Pt 1):586–599. Available from http://www.ncbi.nlm.nih.gov/pubmed/11140442. Accessed 20 May 2011

  • Ostfeld, A., & Salomons, E. (2006). Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems. Engineering Optimization 38(3):337–352. doi: 10.1080/03052150500478007.

    Google Scholar 

  • Ozdemir, O. N., & Ucak, A. (2002). Simulation of chlorine decay in drinking-water distribution systems. Journal of Environmental Engineering, 128(1), 31. doi:10.1061/(ASCE)0733-9372(2002)128:1(31).

    Article  CAS  Google Scholar 

  • Parks, S. L. I., & VanBriesen, J. M. (2009). Booster disinfection for response to contamination in a drinking water distribution system. Journal of Water Resources Planning and Management, 135(6), 502. doi:10.1061/(ASCE)0733-9496(2009)135:6(502).

    Article  Google Scholar 

  • Powell, J. C., Hallam, N. B., West, J. R., Forster, C. F., Simms, J., & For, J. C. (2010). Factors which control bulk chlorine decay rates. Evaluation, 34(1), 2005–2010.

    Google Scholar 

  • Powell, J.C., West, J.R., Hallam, N.B., Forster, C.F., & Simms, J. (2000). Performance of various kinetic models for chlorine decay. Journal of Water Resources Planning and Management 126(1):13–20. Available from http://link.aip.org/link/?JWRMD5/126/13/1. Accessed 12 December 2011

    Google Scholar 

  • Prasad, T. D., Walters, G., & Savic, D. (2004). Booster disinfection of water supply networks: multiobjective approach. Journal of Water Resources Planning and Management, 130(5), 367. doi:10.1061/(ASCE)0733-9496(2004)130:5(367).

    Article  Google Scholar 

  • Propato, M. (2006). Contamination warning in water networks: general mixed-integer linear models for sensor location design. Journal of Water Resources Planning and Management, 132(4), 225. doi:10.1061/(ASCE)0733-9496(2006)132:4(225).

    Article  Google Scholar 

  • Propato, M., & Uber, J. G. (2004a). Linear least-squares formulation for operation of booster disinfection systems. Journal of Water Resources Planning and Management, 130(1), 53. doi:10.1061/(ASCE)0733-9496(2004)130:1(53).

    Article  Google Scholar 

  • Propato, M., & Uber, J. G. (2004b). Booster system design using mixed-integer quadratic programming. Journal of Water Resources Planning and Management, 130(4), 348. doi:10.1061/(ASCE)0733-9496(2004)130:4(348).

    Article  Google Scholar 

  • Richardson, S. (2003). Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry, 22(10), 666–684. doi:10.1016/S0165-9936(03)01003-3.

    Article  CAS  Google Scholar 

  • Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & Demarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research, 636(1–3), 178–242. doi:10.1016/j.mrrev.2007.09.001.

    Article  CAS  Google Scholar 

  • Sadiq, R., & Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment 321(1–3):21–46. Available from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.5429. Accessed 20 May 2011

  • Shang, F., Uber, James G, & Rossman, L. a. (2008). Modeling reaction and transport of multiple species in water distribution systems. Environmental Science & Technology 42(3):808–14. Available from http://www.ncbi.nlm.nih.gov/pubmed/18323106.

  • Tamminen, S., & Ramos, H. (2008). Water supply system performance for different pipe materials Part I: water quality analysis. Water Resources Management 22(11):1579–1607. Available from http://www.springerlink.com/index/X75765X1662N0342.pdf. Accessed 12 December 2011

  • Taylor, P., Ozdemir, O N, & Demir, E. (2010). Experimental study of chlorine bulk decay in water supply pipes Experimental study of chlorine bulk decay in water supply pipes Etude expérimentale de la décroissance volumique du chlore dans les canalisations d ’ alimentation en eau. Engineering :37–41.

  • Tryby, M. E., Boccelli, D. L., Uber, J. G., & Rossman, L. A. (2002). Facility location model for booster disinfection of water supply networks. Journal of Water Resources Planning and Management, 128(5), 322. doi:10.1061/(ASCE)0733-9496(2002)128:5(322).

    Article  Google Scholar 

  • USEPA. (2004). The Effectiveness of Disinfectant Residuals in the Distribution System. Environmental Protection. 1200 Pennsylvania Ave., NW Washington DC.

  • WHO. (2004). Guidelines for drinking-water quality. Geneva, Switzerland. Available from http://books.google.com/books?hl=en&lr=&id=1JMvaK_-PYwC&oi=fnd&pg=PR9&dq=Guidelines+for+drinking+water+quality&ots=C61HDDgjuA&sig=WF4NSob_vjnXLEsjUngt2aCsmSw. Accessed 12 December 2011

Download references

Acknowledgments

The authors would like to thank to the City of Kelowna for providing their valuable data and information. The project was funded by the National Science and Engineering Research Council (NSERC) and RES'EAU-WaterNET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilufar Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, N., Sadiq, R. & Rodriguez, M.J. Optimizing booster chlorination in water distribution networks: a water quality index approach. Environ Monit Assess 185, 8035–8050 (2013). https://doi.org/10.1007/s10661-013-3153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3153-z

Keywords

Navigation