Skip to main content
Log in

Experimental Study of Elastic Constants of a Dense Foam with Weak Cosserat Coupling

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A dense closed cell foam is studied to determine which continuum theory of elasticity is applicable. Size effects inconsistent with classical elasticity are observed. The material exhibits a characteristic length scale considerably larger, by more than a factor 6, than the largest observable structure size. The Cosserat coupling number \(N\) is shown to be small, via measurements of size effects in square section bars, comparison with size effects in round section bars, and determination of warp of a square section bar in torsion. For this material, the couple stress theory is excluded and the modified couple stress theory is excluded. Theories that force constants to their thermodynamic limits do not apply to this foam. The role of other generalized continuum theories is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  2. Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965)

    Article  Google Scholar 

  3. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, vol. 1, pp. 621–729. Academic Press, New York (1968)

    Google Scholar 

  4. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975)

    Article  ADS  Google Scholar 

  5. Krishna Reddy, G.V., Venkatasubramanian, N.K.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45, 429–431 (1978)

    Article  ADS  Google Scholar 

  6. Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section—theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) (8 pages)

    Article  ADS  Google Scholar 

  7. Drugan, W.J., Lakes, R.S.: Torsion of a Cosserat elastic bar with square cross section: theory and experiment. Z. Angew. Math. Phys. 69(2), 24 (2018)

    Article  MathSciNet  Google Scholar 

  8. Mindlin, R.D.: Effect of couple stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  9. Koiter, W.T.: Couple-Stresses in the theory of elasticity, Parts I and II. Proc. K. Ned. Akad. Wet. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  10. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)

    Article  Google Scholar 

  11. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  Google Scholar 

  12. Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010)

    Article  Google Scholar 

  13. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Article  Google Scholar 

  14. Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open cell polymer foam. Philos. Mag. 96, 93–111 (2016)

    Article  ADS  Google Scholar 

  15. Rueger, Z., Lakes, R.S.: Cosserat elasticity of negative Poisson’s ratio foam: experiment. Smart Mater. Struct. 25, 054004 (2016), 8 pp.

    Article  ADS  Google Scholar 

  16. Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018)

    Article  ADS  Google Scholar 

  17. Merkel, A., Tournat, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011)

    Article  ADS  Google Scholar 

  18. Spadoni, A., Ruzzene, M.: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012)

    Article  ADS  Google Scholar 

  19. Beveridge, A.J., Wheel, M.A., Nash, D.H.: The micropolar elastic behaviour of model macroscopically heterogeneous materials. Int. J. Solids Struct. 50, 246–255 (2013)

    Article  Google Scholar 

  20. General Plastics Company, 4910 Burlington Way, Tacoma, WA 98409, https://www.generalplastics.com/

  21. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Pergamon, Oxford, Cambridge (1997)

    Book  Google Scholar 

  23. Sokolnikoff, I.S.: Theory of Elasticity. Krieger, Malabar (1983)

    MATH  Google Scholar 

  24. Weiner, J.H.: Statistical Mechanics of Elasticity. Wiley, New York (1983)

    MATH  Google Scholar 

  25. Timoshenko, S.P.: History of Strength of Materials. Dover, New York (1983)

    Google Scholar 

  26. Drumheller, D.S., Sutherland, H.J.: A lattice model for stress wave propagation in composite materials. J. Appl. Mech. 40(1), 149–154 (1973)

    Article  ADS  Google Scholar 

  27. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  Google Scholar 

  28. Hütter, G., Mülich, U., Kuna, M.: Micromorphic homogenizationn of a porous medium: elastic behavior and quasi-brittle damage. Contin. Mech. Thermodyn. 27, 1059–1072 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016)

    Article  Google Scholar 

  30. Anderson, W.B., Lakes, R.S.: Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29, 6413–6419 (1994)

    Article  ADS  Google Scholar 

  31. Lakes, R.S., Gorman, D., Bonfield, W.: Holographic screening method for microelastic solids. J. Mater. Sci. 20, 2882–2888 (1985)

    Article  ADS  Google Scholar 

  32. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990)

    Article  Google Scholar 

  33. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  34. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MathSciNet  Google Scholar 

  35. Kinra, V.K., Anand, A.: Wave propagation in a random particulate composite at long and short wavelengths. Int. J. Solids Struct. 18(5), 367–380 (1982)

    Article  Google Scholar 

  36. Kinra, V.K., Ker, E.: An experimental investigation of pass bands and stop bands in two periodic particulate composites. Int. J. Solids Struct. 19(5), 393–410 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

Partial support of the National Science Foundation under Grant CMMI-1361832 is gratefully acknowledged. We thank W.J. Drugan for application of the full analysis of [7] to interpret square section results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Lakes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rueger, Z., Lakes, R.S. Experimental Study of Elastic Constants of a Dense Foam with Weak Cosserat Coupling. J Elast 137, 101–115 (2019). https://doi.org/10.1007/s10659-018-09714-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-09714-8

Keywords

Mathematics Subject Classification

Navigation