Skip to main content

Advertisement

Log in

Three alternative methods to resolve paradoxical associations of exposures before term

  • PERINATAL EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

To propose three methods to estimate associations between pregnancy exposures and outcomes before term, including the association between preeclampsia and preterm fetal-infant mortality, while avoiding the selection bias found in conventional analytic designs. Population-level analysis of 1,099,839 women who delivered live or stillborn infants in Quebec hospitals from 1989 to 2012, covering nearly a quarter of Canadian births. The exposure of interest was preeclampsia at 20–29, 30–33, 34–36, and ≥37 weeks of gestation. We compared preeclamptic with non-preeclamptic pregnancies in parametric survival models with a Weibull distribution using three analytic designs: (1) fetuses-at-risk; (2) bias correction factors; and (3) analysis of pregnancies at high risk of preterm delivery. Main outcome measures were occurrence of fetal or postnatal infant death before discharge. In models affected by bias due to selection of preterm births, women with preeclampsia early in gestation had paradoxically lower risks of fetal and infant mortality than women without preeclampsia. All three analytic approaches reversed the associations, showing a harmful effect of preeclampsia before term. At 20–29 weeks, for example, preeclampsia was associated with 1.35 times the risk of infant mortality (95 % confidence interval 1.14–1.60) and 1.40 times the risk of stillbirth (95 % confidence interval 1.18–1.67) with the fetuses-at-risk approach. Paradoxically protective benefits of exposures such as preeclampsia before term are artifacts of inappropriate analytic design. Outcomes before term should be analyzed with care, using methods that address bias due to selection of preterm deliveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McElrath TF, Allred EN, Boggess KA, Kuban K, O’Shea TM, Paneth N. Maternal antenatal complications and the risk of neonatal cerebral white matter damage and later cerebral palsy in children born at an extremely low gestational age. Am J Epidemiol. 2009;170:819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen X, Wen S, Smith G, Yang Q, Walker M. General obstetrics: pregnancy-induced hypertension is associated with lower infant mortality in preterm singletons. BJOG. 2006;113:544–51.

    Article  CAS  PubMed  Google Scholar 

  3. Piper JM, Langer O, Xenakis EM-J, McFarland M, Elliott BD, Berkus MD. Perinatal outcome in growth-restricted fetuses: Do hypertensive and normotensive pregnancies differ? Obstet Gynecol. 1996;88:194–9.

    Article  CAS  PubMed  Google Scholar 

  4. Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365:785–99.

    Article  PubMed  Google Scholar 

  5. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.

    Article  PubMed  Google Scholar 

  6. Basso O, Wilcox A. Mortality risk among preterm babies: immaturity vs. underlying pathology. Epidemiology. 2010;21:521–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schiff E, Friedman SA, Mercer BM, Sibai BM. Fetal lung maturity is not accelerated in preeclamptic pregnancies. Am J Obstet Gynecol. 1993;169:1096–101.

    Article  CAS  PubMed  Google Scholar 

  8. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology. 2004;15:615–25.

    Article  PubMed  Google Scholar 

  9. Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300–6.

    PubMed  Google Scholar 

  10. VanderWeele TJ, Hernández-Diaz S. Is there a direct effect of pre-eclampsia on cerebral palsy not through preterm birth? Paediatr Perinat Epidemiol. 2011;25:111–5.

    Article  PubMed  Google Scholar 

  11. Wilcox AJ, Weinberg CR, Basso O. On the pitfalls of adjusting for gestational age at birth. Am J Epidemiol. 2011;174:1062–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gagliardi L. On the importance—and unimportance—of gestational age. Acta Paediatr. 2015;104:544–6.

    Article  PubMed  Google Scholar 

  13. VanderWeele TJ, Mumford SL, Schisterman EF. Conditioning on intermediates in perinatal epidemiology. Epidemiology. 2012;23:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Auger N, Gilbert NL, Naimi AI, Kaufman JS. Fetuses-at-risk, to avoid paradoxical associations at early gestational ages: extension to preterm infant mortality. Int J Epidemiol. 2014;43:1154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ministère de la santé et des services sociaux. Cadre Normatif de Système Med-Écho. 2015, p. 155–204.

  16. Steegers EAP, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–44.

    Article  PubMed  Google Scholar 

  17. Melamed N, Ray JG, Hladunewich M, Cox B, Kingdom JC. Gestational hypertension and preeclampsia: are they the same disease? J Obstet Gynaecol Can. 2014;36:642–7.

    Article  PubMed  Google Scholar 

  18. Auger N, Park AL, Gamache P, Pampalon R, Daniel M. Weighing the contributions of material and social area deprivation to preterm birth. Soc Sci Med. 2012;75:1032–7.

    Article  PubMed  Google Scholar 

  19. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342:1500–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yu VYH. Is neonatal intensive care justified in all preterm infants? Croat Med J. 2005;46:744–50.

    PubMed  Google Scholar 

  21. Basso O, Wilcox AJ. Might rare factors account for most of the mortality of preterm babies? Epidemiology. 2011;22:320–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Platt RW, Joseph KS, Ananth CV, Grondines J, Abrahamowicz M, Kramer MS. A proportional hazards model with time-dependent covariates and time-varying effects for analysis of fetal and infant death. Am J Epidemiol. 2004;160:199–206.

    Article  PubMed  Google Scholar 

  23. Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model. J Am Stat Assoc. 1989;84:1074–8.

    Article  Google Scholar 

  24. Kramer MS, Zhang X, Platt RW. Analyzing risks of adverse pregnancy outcomes. Am J Epidemiol. 2014;179:361–7.

    Article  PubMed  Google Scholar 

  25. Ananth CV, VanderWeele TJ. Placental abruption and perinatal mortality with preterm delivery as a mediator: disentangling direct and indirect effects. Am J Epidemiol. 2011;174:99–108.

    Article  PubMed  PubMed Central  Google Scholar 

  26. VanderWeele TJ, Hernández-Díaz S. Is there a direct effect of pre-eclampsia on cerebral palsy not through preterm birth? Paediatr Perinat Epidemiol. 2010;25:111–5.

    Article  PubMed  Google Scholar 

  27. Ding P, VanderWeele TJ. Sensitivity analysis without assumptions. Epidemiology. 2016;27:368–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mendola P, Mumford SL, Männistö TI, Holston A, Reddy UM, Laughon SK. Controlled direct effects of preeclampsia on neonatal health after accounting for mediation by preterm birth. Epidemiology. 2015;26:17–26.

    Article  PubMed  Google Scholar 

  29. Joseph KS. Commentary: exegesis of effect modification—biological or spurious? Paediatr Perinat Epidemiol. 2009;23:417–20.

    Article  CAS  PubMed  Google Scholar 

  30. Haig D. Genetic conflicts in human pregnancy. Q Rev Biol. 1993;68:495–532.

    Article  CAS  PubMed  Google Scholar 

  31. Hernández-Díaz S, Schisterman EF, Hernán MA. The birth weight “paradox” uncovered? Am J Epidemiol. 2006;164:1115–20.

    Article  PubMed  Google Scholar 

  32. VanderWeele TJ. Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology. 2010;21:540–51.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Westreich D. Berkson’s bias, selection bias, and missing data. Epidemiology. 2012;23:159–64.

    Article  PubMed  PubMed Central  Google Scholar 

  34. MacLehose RF, Kaufman JS. The wizard of odds. Epidemiology. 2012;23:10–2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schisterman EF, Sjaarda LA. No right answers without knowing your question. Paediatr Perinat Epidemiol. 2016;30:20–2.

    Article  PubMed  Google Scholar 

  36. Manktelow BN, Lal MK, Field DJ, Sinha SK. Antenatal corticosteroids and neonatal outcomes according to gestational age: a cohort study. Arch Dis Child Fetal Neonatal Ed. 2010;95:F95–8.

    Article  PubMed  Google Scholar 

  37. Luque-Fernandez MA, Zoega H, Valdimarsdottir U, Williams MA. Deconstructing the smoking-preeclampsia paradox through a counterfactual framework. Eur J Epidemiol. 2016. doi:10.1007/s10654-016-0139-5.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Canadian Institutes of Health Research (MOP-130452). NA was supported by a career award from the Fonds de recherche du Québec-Santé. The authors thank Robert W Platt for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Auger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auger, N., Naimi, A.I., Fraser, W.D. et al. Three alternative methods to resolve paradoxical associations of exposures before term. Eur J Epidemiol 31, 1011–1019 (2016). https://doi.org/10.1007/s10654-016-0175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-016-0175-1

Keywords

Navigation