Skip to main content

Advertisement

Log in

On flows in simulated urban canopies

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Flow and turbulence within building canopies continue to be a topic of profound interest in the context of pedestrian comfort, wind loading, contaminant dispersion and energy usage in populated urban areas. Many experimental studies have been reported on this topic, but they either deal with wind/water tunnel measurements (at low Reynolds numbers) or complex urban building clusters (where the results are site dependent and difficult to interpret). To avert such problems, an instrumented mock building cluster made of a regular array of man-sized objects (shipping containers) placed in the atmospheric boundary layer was used to investigate spatial flow adjustment, flow patterns (as a function of approach angle) and turbulence within the building canopy. A new scaling is proposed for the characteristic canopy velocity based on the approach flow and canopy morphology, which was found to perform well when evaluated against experimental data. The flow adjustment at the leading and trailing edges of the canopy was found to be in good agreement with the formulation of Belcher et al. (J Fluid Mech 488:369–398, 2003). The results have applications to developing simple and fast contaminant transport and dispersion models that can be used in conjunction with emergency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Addepalli B, Pardyjak ER (2013) Investigation of the flow structure in step-up street canyons —mean flow and turbulence statistics. Boundary-Layer Meteor. doi:10.1007/s10546-013-9810-5.

  2. Addepalli B, Pardyjak ER (2013) A study of flow fields in step-down street canyons. Environ Fluid Mech submitted to special urban issue, under revision

  3. Allwine KJ, Flaherty JE (2006) Urban dispersion program MSG05 field study: summary of tracer and meteorological measurements. Tech. Rep. PNNL-15969, Pacific Northwest National Laboratory

  4. Allwine KJ, Flaherty JE (2007) Urban dispersion program overview and MID05 field study summary. Tech. Rep. PNNL-16696, Pacific Northwest National Laboratory

  5. Allwine KJ, Shinn JH, Streit GE, Clawson KL, Brown M (2002) Overview of URBAN 2000 a multiscale field study of dispersion through an urban environment. Bull Am Meteorol Soc 83:521–536

    Article  Google Scholar 

  6. Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488:369–398

    Article  Google Scholar 

  7. Bentham T, Britter R (2003) Spatially averaged flow within obstacle arrays. Atmos Environ 37:2037–2043

    Article  Google Scholar 

  8. Biltoft CA, Yee E, Jones CD (2002) Overview of the Mock Urban Setting Test (MUST). In: 4th symposium on the urban environment. American Meteorological Society, Norfolk, May 2002

  9. Britter S, Hanna S (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–96

    Article  Google Scholar 

  10. Brown MJ (2000) Urban parameterizations for mesoscale meteorological models. In: Boybeyi Z (ed) Mesoscale atmospheric dispersion. WIT Press, Southhampton, p 193

  11. Brown M, Khalsa H, Nelson M, Boswell D (2004) Street canyon flow patterns in a horizontal plane: measurements from the Joint Urban 2003 field experiment. In: 5th symposium on the urban environment. American Meteorological Society, Vancouver, August 2004

  12. Camelli F, Lohner R, Hanna S (2005) VLES study of MUST experiment. In: 43rd AIAA aerospace sciences meeting and exhibit, Reno

  13. Castillo MC, Inagaki A, Kanda M (2011) The effects of inner- and outer-layer turbulence in a convective boundary layer on the near-neutral inertial sublayer over an urban-like surface. Boundary-Layer Meteorol 140:453–469

    Article  Google Scholar 

  14. Chen R-R, Berman NS, Boyer DL, Fernando HJS (1996) Physical model of diurnal heating in the vicinity of a long mountain. J Atmos Sci 53:62–85

    Article  Google Scholar 

  15. Christen A, Vogt R, Rotach MW, Parlow E (2002) First results from BUBBLE. I: Profiles of fluxes in the urban roughness sublayer. In: preprints 4th symposium on the urban environment, Norfolk, May 2002

  16. Cionco RM (1965) Mathematical model for air flow in a vegetative canopy. J Appl Meteorol 4:517–522

    Article  Google Scholar 

  17. Cionco RM (1972) A wind-profile index for canopy flow. Boundary-Layer Meteorol 3:255–263

    Article  Google Scholar 

  18. Clarke CF, Ching JKS, Godowich JM (1982) A study of turbulence in an urban environment. In: EPA Technical Report, EPA 600-S3-82-062

  19. Dallman A, Di Sabatino S, Fernando HJS (2013) Flow and turbulence in an industrial/suburban roughness canopy. J Environ Fluid Mech. doi:10.1007/s10652-013-9274-7

  20. Dallman A, Magnusson S, Britter R, Norford L, Entekhabi D, Fernando HJS (2013) Conditions for thermal circulation in urban street canyons. J Fluid Mech, Submitted for publication, under revision

  21. Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles within and above an urban canopy. Boundary-Layer Meteorol 127:131–151

    Article  Google Scholar 

  22. Di Sabatino S, Leo LS, Cataldo R, Ratti C, Britter RE (2010) Construction of digital elevation models for a southern European city and a comparative morphological analysis with respect to northern European and North American cities. J Appl Meteorol Climatol 49:1377–1396

    Article  Google Scholar 

  23. DuPont S, Otte TL, Ching JKS (2004) Simulation of meteorological fields within and above urban and rural canopies with a mosescale model (MM5). Boundary-Layer Meteorol 113:111–158

    Article  Google Scholar 

  24. Feigenwinter C, Vogt R, Parlow E (1999) Vertical structure of selected turbulence characteristics above an urban canopy. Theor Appl Climatol 62:51–63

    Article  Google Scholar 

  25. Finnigan JJ (1985) Turbulent transport in flexible plant canopies. In: Hutchinson BA, Hicks BB (eds) The forest–atmosphere interaction. Reidel, Dordrecht, pp 443–480

  26. Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  27. Fernando HJS (2010) Fluid mechanics of urban atmospheres in complex terrain. Annu Rev Fluid Mech 42:365–389

    Article  Google Scholar 

  28. Fernando HJS, Zajic D, Di Sabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys Fluids 22:051301-1–051301-20.

    Google Scholar 

  29. Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res 109:D24101

    Article  Google Scholar 

  30. Higgins CW, Froidevaux M, Simeonov V, Vercauteren N, Barry C, Parlange MB (2012) The effect of scale on the applicability of Taylor’s Frozen turbulence hypothesis in the atmospheric boundary layer. Boundary-Layer Meteorol 143:379–391

    Article  Google Scholar 

  31. Högström U, Bergström H, Alexandersson H (1982) Turbulence characteristics in a near-neutrally stratified urban atmosphere. Boundary-Layer Meteorol 23:449–472

    Article  Google Scholar 

  32. Hanna SR, Chang JC (2001) Use of the Kit Fox field data to analyze dense gas dispersion modeling issues. Atmos Environ 35:2231–2242

    Article  Google Scholar 

  33. Hanna SR, Steinberg KW (2001) Overview of Petroleum Environmental Research Forum (PERF) dense gas dispersion modeling project. Atmos Environ 35:2223–2229

    Article  Google Scholar 

  34. Hunter LJ, Watson ID, Johnson GT (1990) Modeling air flow regimes in urban canyons. Energ Build 15–16:315–324

    Article  Google Scholar 

  35. Hussain M, Lee BE (1980) A wind tunnel study of the mean pressure forces acting on large groups of low-rise buildings. J Wind Eng Ind Aerodyn 6:207–225

    Article  Google Scholar 

  36. Inagaki A, Kanda M (2008) Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow. J Fluid Mech 615:101–120

    Article  Google Scholar 

  37. Jackson PS (1981) On the displacement height in logarithmic velocity profile. J Fluid Mech 111:15–25

    Article  Google Scholar 

  38. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford

    Google Scholar 

  39. Kanda M, Kanega M, Kawai T, Moriwaki R, Sugawara H (2007) Roughness lengths for momentum and heat derived from outdoor urban scale models. J Appl Meteorol Climatol 46:1067–1079

    Article  Google Scholar 

  40. Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Boundary-Layer Meteorol 111:55–84

    Article  Google Scholar 

  41. Kim J, Baik J (2003) Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. J Wind Eng Ind Aerodyn 91:309–329

    Article  Google Scholar 

  42. Klein P, Clark JV (2007) Flow variability in a North American downtown street canyon. J Appl Meteorol Climatol 46:851–877

    Article  Google Scholar 

  43. Klein P, Leitl B, Schatzmann M (2007) Driving physical mechanisms of flow and dispersion in urban canopies. Int J Climatol 27:1887–1908

    Article  Google Scholar 

  44. Kotsovinos N (1991) Turbulence spectra in free convection flow. Phys Fluids A 3:163–167

    Article  Google Scholar 

  45. Kundu PK, Beardsley RC (1991) Evidence of a critical Richardson number in moored measurements during the upwelling season off northern California. J Geophys Res 96:4855–4868

    Article  Google Scholar 

  46. Lee IY, Park HM (1994) Parameterization of the pollutant transport and dispersion in urban street canyons. Atmos Environ 28:2343–2349

    Article  Google Scholar 

  47. Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539

    Article  Google Scholar 

  48. Lettau H (1969) Note on aerodynamic roughness parameter estimation on the basis of roughness element description. J Appl Meteorol 8:828–832

    Article  Google Scholar 

  49. Louka P (1999) Measurements of airflow in an urban environment. PhD thesis, University of Reading

  50. Louka P, Belcher SE, Harrison RG (2000) Coupling between air flow in streets and the well-developed boundary layer aloft. Atmos Environ 34:2613–2621

    Article  Google Scholar 

  51. Macdonald RW (2000) Modeling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97:25–45

    Article  Google Scholar 

  52. Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for estimation of surface roughness of obstacle arrays. Atmos Environ 32:1857–1864

    Article  Google Scholar 

  53. Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteorol 104:261–304

    Article  Google Scholar 

  54. Miles J (1986) Richardson’s criterion for the stability of stratified shear flow. Phys Fluids 29:3470–3471

    Article  Google Scholar 

  55. Milliez M, Carissimo B (2008) Computational fluid dynamical modelling of concentration fluctuations in an idealized urban area. Boundary-Layer Meteorol 127(2):241–259

    Article  Google Scholar 

  56. Mulhearn PJ, Finnigan JJ (1978) Turbulent flow over a very rough, random surface. Boundary-Layer Meteorol 15:109–132

    Article  Google Scholar 

  57. Nelson MA, Pardyjak ER, Klewicki JC, Pol SU, Brown MJ (2007) Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part I: mean flow and turbulence statistics. J Appl Meteorol Climatol 46:2038–2054

    Article  Google Scholar 

  58. Nelson MA, Pardyjak ER, Brown MJ, Klewicki JC (2007) Properties of the wind field within the Oklahoma City Park Avenue street canyon. Part II: spectra, cospectra, and quadrant analyses. J Appl Meteorol Climatol 46:2055–2073

    Article  Google Scholar 

  59. Oikawa S, Meng Y (1995) Turbulence characteristics and organized motion in a suburban roughness layer. Boundary-Layer Meteorol 74:289–312

    Article  Google Scholar 

  60. Oke TR (1976) The distinction between the canopy and boundary-layer urban heat islands. Atmosphere 14:268–277

    Google Scholar 

  61. Oke TR (1988) Boundary layer climates, 2nd edn. Methuen, New York

    Google Scholar 

  62. Oke TR (1988) Street design and urban canopy layer climate. Energ Build 11:103–113

    Article  Google Scholar 

  63. Princevac M, Fernando HJS, Whiteman DC (2005) Turbulent entrainment in natural gravity driven flows. J Fluid Mech 533:259–268

    Article  Google Scholar 

  64. Princevac M, Baik JJ, Li X, Park SB, Pan H (2010) Lateral channeling within rectangular arrays of cubical obstacles. J Wind Eng Ind Aerodyn 98:377–385

    Article  Google Scholar 

  65. Ramamurthy P, Pardyjak ER, Klewicki JC (2007) Observations of the effects of atmospheric stability on turbulence statistics deep within an urban street canyon. J Appl Meteorol Climatol 46:2074–2085

    Article  Google Scholar 

  66. Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22:79–90

    Article  Google Scholar 

  67. Rotach MW (1993) Turbulence close to a rough urban surface. Part I: Reynolds stress. Boundary-Layer Meteorol 65:1–28

    Article  Google Scholar 

  68. Rotach MW (1993) Turbulence close to a rough urban surface. Part II: variances and gradients. Boundary-Layer Meteorol 66:75–92

    Article  Google Scholar 

  69. Rotach MW (1995) Profiles of turbulence statistics in and above an urban street canyon. Atmos Environ 29:1473–1486

    Article  Google Scholar 

  70. Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990

    Article  Google Scholar 

  71. Strang EJ, Fernando HJS (2001) Entrainment and mixing in stratified shear flows. J Fluid Mech 428:349–386

    Article  Google Scholar 

  72. Takimoto H, Sato A, Barlow JF, Moriwaki R, Inagaki A, Onomura S, Kanda M (2011) Particle image velocimetry measurements of turbulent flow within outdoor and indoor urban scale models and flushing motions in urban canopy Layers. Boundary-Layer Meteorol 140:295–314

    Article  Google Scholar 

  73. United Nations Secretariat (Population Division of the Department of Economic and Social Affairs) (2006) World Population Prospectus, 2006 Revision

  74. Wang B, Yee E, Lien F (2009) Numerical study of dispersing pollutant clouds in a built-up environment. Int J Heat Fluid Flow 30:3–19

    Article  Google Scholar 

  75. Warner T, Benda P, Swerdlin S, Knievel J, Argenta E, Aronian B, Balsley B, Bowers J, Carter R, Clark P, Clawson K, Copeland J, Crook A, Frehlich R, Jensen M, Liu Y, Mayor S, Meillier Y, Morley B, Sharman R, Spuler S, Storwold D, Sun J, Weil J, Xu M, Yates A, Zhang Y (2007) The Pentagon Shield Field Program. Bull Am Meteorol Soc 88:167–176

    Article  Google Scholar 

  76. Wood C, Arnold SJ, Balogun A, Barlow JF, Belcher SE, Britter R, Cheng H, Dobre A, Lingard J, Martin D (2009) Dispersion experiments in central London. Bull Am Meteorol Soc 90:955–969

    Article  Google Scholar 

  77. Yee E, Biltoft CA (2004) Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles. Boundary-Layer Meteorol 111:363–415

    Article  Google Scholar 

  78. Zajic D, Fernando HJS, Calhoun R, Princevac M, Brown MJ, Pardyjak ER (2011) Flow and turbulence in an urban canyon. J Appl Meteorol Climatol 50:203–223

    Article  Google Scholar 

  79. Zhang Y, Gu Z (2013) Air quality by urban design. Nat Geosci 6:506

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Mr. Christopher Biltoft, Dr. Marko Princevac and Dr. Matthew A. Nelson for their help during field measurements and data processing. This research was supported by the NSF (CMG; Grant # 0934592) and ARO (Geosciences). The work was carried out when the first two authors were at the Center for Environmental Fluid Dynamics at Arizona State University, the support of which is gratefully acknowledged. The authors are very thankful to anonymous reviewers for helpful suggestions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Zajic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zajic, D., Fernando, H.J.S., Brown, M.J. et al. On flows in simulated urban canopies. Environ Fluid Mech 15, 275–303 (2015). https://doi.org/10.1007/s10652-013-9311-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-013-9311-6

Keywords

Navigation