Skip to main content
Log in

Subgrid-Scale Modeling of Reacting Scalar Fluxes in Large-Eddy Simulations of Atmospheric Boundary Layers

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In large-eddy simulations of atmospheric boundary layer turbulence, the lumped coefficient in the eddy-diffusion subgrid-scale (SGS) model is known to depend on scale for the case of inert scalars. This scale dependence is predominant near the surface. In this paper, a scale-dependent dynamic SGS model for the turbulent transport of reacting scalars is implemented in large-eddy simulations of a neutral boundary layer. Since the model coefficient is computed dynamically from the dynamics of the resolved scales, the simulations are free from any parameter tuning. A set of chemical cases representative of various turbulent reacting flow regimes is examined. The reactants are involved in a first-order reaction and are injected in the atmospheric boundary layer with a constant and uniform surface flux. Emphasis is placed on studying the combined effects of resolution and chemical regime on the performance of the SGS model. Simulations with the scale-dependent dynamic model yield the expected trends of the coefficients as function of resolution, position in the flow and chemical regime, leading to resolution-independent turbulent reactant fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABL:

Atmospheric boundary layer

LES:

Large-eddy simulation

SGS:

Subgrid-scale

RANS:

Reynolds Averaged Navier Stokes

References

  1. D. Kley (1997) ArticleTitleTropospheric chemistry and transport Science 276 1043–1047 Occurrence Handle10.1126/science.276.5315.1043 Occurrence Handle1:CAS:528:DyaK2sXjt12ls70%3D

    Article  CAS  Google Scholar 

  2. U. Schumann (1989) ArticleTitleLarge-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer Atmos. Env. 23 1713–1729 Occurrence Handle1:CAS:528:DyaK3cXisV2msA%3D%3D

    CAS  Google Scholar 

  3. W. Gao M.L. Wesely P.V. Doskey (1993) ArticleTitleNumerical modeling of the turbulent diffusion and chemistry of NO x , O3, isoprene and other reactive trace gases in and above a forest canopy J. Geophys. Res. 98 18339–18353 Occurrence Handle1:CAS:528:DyaK2cXlvFSksA%3D%3D

    CAS  Google Scholar 

  4. R.I. Sykes S.F. Parker D.S. Henn W.S. Lewellen (1994) ArticleTitleTurbulent mixing with chemical reactions in the planetary boundary layer J. Appl. Meteorol. 33 825–834

    Google Scholar 

  5. W. Gao M.L. Wesely (1994) ArticleTitleNumerical modelling of the turbulent fluxes of chemically reactive trace gases in the atmospheric boundary layer J. Appl. Meteorol. 33 835–847

    Google Scholar 

  6. G.H.L. Verver H. Dop Particlevan A.A.M. Holtslag (1997) ArticleTitleTurbulent mixing of reactive gases in the convective boundary layer Bound.-Layer Meteorol. 85 197–222 Occurrence Handle10.1023/A:1000414710372

    Article  Google Scholar 

  7. M.J. Molemaker J. Vilà-Guerau de Arellano (1998) ArticleTitleTurbulent control of chemical reactions in the convective boundary layer J. Atmos. Sci. 55 568–579 Occurrence Handle10.1175/1520-0469(1998)055<0568:COCRBC>2.0.CO;2

    Article  Google Scholar 

  8. A.C. Petersen C. Beets H. Dop Particlevan P.G. Duynkerke (1999) ArticleTitleMass-flux schemes for transport of non-reactive and reactive scalars in the convective boundary layer J. Atmos. Sci. 56 37–56 Occurrence Handle10.1175/1520-0469(1999)056<0037:MFCORS>2.0.CO;2

    Article  Google Scholar 

  9. A.C. Petersen A.A.M. Holtslag (1999) ArticleTitleA first-order closure for covariances and fluxes of reactive species in the convective boundary layer J. Appl. Meteorol. 38 1758–1776 Occurrence Handle10.1175/1520-0450(1999)038<1758:AFOCFC>2.0.CO;2

    Article  Google Scholar 

  10. A.C. Petersen (2000) ArticleTitleThe impact of chemistry on flux estimates in the convective boundary layer J. Atmos. Sci. 57 3398–3405 Occurrence Handle10.1175/1520-0469(2000)057<3398:TIOCOF>2.0.CO;2

    Article  Google Scholar 

  11. M.C. Krol M.J. Molemaker J. Vilà-Guerau de Arellano (2000) ArticleTitleEffects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer J. Geophys. Res. 105 6871–6884 Occurrence Handle10.1029/1999JD900958 Occurrence Handle1:CAS:528:DC%2BD3cXisVaku7w%3D

    Article  CAS  Google Scholar 

  12. G.H.L. Verver H. Dop Particlevan A.A.M. Holtslag (2000) ArticleTitleTurbulent mixing and the chemical breakdown of isoprene in the atmospheric boundary layer J. Geophys. Res. 105 3983–4002 Occurrence Handle10.1029/1999JD900956 Occurrence Handle1:CAS:528:DC%2BD3cXhvVyitLc%3D

    Article  CAS  Google Scholar 

  13. J. Vilà-Guerau de Arellano J.W.M. Cuijpers (2000) ArticleTitleThe chemistry of a dry cloud: the effects of radiation and turbulence J. Atmos. Sci. 57 1573–1584 Occurrence Handle10.1175/1520-0469(2000)057<1573:TCOADC>2.0.CO;2

    Article  Google Scholar 

  14. E.G. Patton K.J. Davis M.C. Barth P.P. Sullivan (2001) ArticleTitleDecaying scalars emitted by a forest canopy: a numerical study Bound.-Layer Meteorol. 100 91–129 Occurrence Handle10.1023/A:1019223515444

    Article  Google Scholar 

  15. J.-F. Vinuesa J. Vilà-Guerau de Arellano (2003) ArticleTitleFluxes and (co-)variances of reacting scalars in the convective boundary layer. Tellus 55B 935–949

    Google Scholar 

  16. H.J.J. Jonker J. Vilà-Guerau de Arellano P.G. Duynkerke (2004) ArticleTitleCharacteristic length scales of reactive species in a convective boundary layer J. Atmos. Sci. 61 41–56 Occurrence Handle10.1175/1520-0469(2004)061<0041:CLSORS>2.0.CO;2

    Article  Google Scholar 

  17. J.-F. Vinuesa J. Vilà-Guerau de Arellano (2005) ArticleTitleIntroducing effective reaction rates to account for the inefficient mixing of the convective boundary layer Atmos. Environ 39 445–461 Occurrence Handle10.1016/j.atmosenv.2004.10.003 Occurrence Handle1:CAS:528:DC%2BD2cXhtFaqu7nF

    Article  CAS  Google Scholar 

  18. C.H. Moeng (1984) ArticleTitleA large-eddy simulation model for the study of planetary boundary-layer turbulence J. Atmos. Sci. 41 2052–2062

    Google Scholar 

  19. J.-F. Vinuesa F. Porté-Agel (2005) ArticleTitleA dynamic similarity subgrid model for chemical transformations in Large Eddy Simulation of the atmospheric boundary layer Geophys. Res. Let. 32 L03814 Occurrence Handle10.1029/2004GL021349

    Article  Google Scholar 

  20. F. Porté-Agel (2004) ArticleTitleA scale dependent dynamic model for scalar transport in LES of the atmospheric boundary layer Bound.-Layer Meteorol. 112 81–105 Occurrence Handle10.1023/B:BOUN.0000020353.03398.20

    Article  Google Scholar 

  21. J.P. Meeder F.T.M. Nieuwstadt (2000) ArticleTitleLarge-eddy simulation of the turbulent dispersion of a reactive plume from a point source into a neutral atmospheric boundary layer Atmos. Environ. 34 3563–3573 Occurrence Handle10.1016/S1352-2310(00)00124-2 Occurrence Handle1:CAS:528:DC%2BD3cXkvFChu7o%3D

    Article  CAS  Google Scholar 

  22. Lilly D.K.: (1967), The representation of small-scale turbulence in numerical simulation experiments, Proc. IBM Scientific Computing Symposium on Environmental Sciences, IBM form no. 320-1951, White Plains, New-York, 195–209.

  23. P.J. Mason S.H. Derbyshire (1990) ArticleTitleLarge-eddy simulation of the stably-stratified atmospheric boundary layer Bound.-Layer Meteorol. 53 117–162 Occurrence Handle10.1007/BF00122467

    Article  Google Scholar 

  24. M. Germano (1992) ArticleTitleTurbulence: The filtering approach J. Fluid Mech. 238 325–336 Occurrence Handle1:CAS:528:DyaK38Xltleksbs%3D

    CAS  Google Scholar 

  25. D.K. Lilly (1992) ArticleTitleA proposed modification of the Germano subgrid-scale closure method Phys. Fluids A 4 633–635 Occurrence Handle10.1063/1.858280

    Article  Google Scholar 

  26. J. Vilà-Guerau de Arellano (2003) ArticleTitleBridging the gap between atmospheric physics and chemistry in studies of small-scale turbulence Bull. Am. Meteorol. Soc. 84 51–56 Occurrence Handle10.1175/BAMS-84-1-51

    Article  Google Scholar 

  27. Pope S.B. (2000) Turbulent flows, Cambridge University Press.

  28. C. Meneveau J. Katz (2000) ArticleTitleScale-invariance and turbulence models for large-eddy simulation Rev. Fluid Mech. 32 1–32

    Google Scholar 

  29. J.D. Albertson M.B. Parlange (1999) ArticleTitleNatural integration of scalar fluxes from complex terrain Adv. Wat. Res. 23 239–252

    Google Scholar 

  30. F. Porté-Agel C. Meneveau M.B. Parlange (2000) ArticleTitleA scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer J. Fluid Mech. 415 261–284 Occurrence Handle10.1017/S0022112000008776

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -F. Vinuesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinuesa, J.F., Porté-Agel, F., Basu, S. et al. Subgrid-Scale Modeling of Reacting Scalar Fluxes in Large-Eddy Simulations of Atmospheric Boundary Layers. Environ Fluid Mech 6, 115–131 (2006). https://doi.org/10.1007/s10652-005-6020-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-005-6020-9

Keywords

Navigation