Skip to main content
Log in

Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Tall fescue (Festuca arundinacea), a widely planted cool-season turfgrass and forage, is tolerant to heavy metals. However, previous investigation demonstrated that different accessions varied in Pb tolerance. In present study, hydroponic system was used to study the effects of Pb on two tall fescue cultivars, Pb tolerant ‘Silverado’ and Pb sensitive ‘AST7001’, respectively. The results indicated that Pb concentration was 14 times lower in shoots of ‘Silverado’ (1.34 mg g−1 dry weight) versus ‘AST7001’ (19.92 mg g−1 dry weight), although it was higher in roots of ‘Silverado’ (68.28 mg g−1 dry weight) versus ‘AST7001’ (48.7 mg g−1 dry weight), when subjected to 1,000 mg L−1 Pb. In both cultivars, Pb caused an induction in malondialdehyde (MDA) content, to a less increase in ‘Silerado’ than ‘AST7001’. Pb treatment decreased significantly soluble protein content in ‘AST7001’. By contrast, soluble protein content was increased progressively, and the ratio of variable to maximal chlorophyll fluorescence was not affected in ‘Silverado’. Pb treated tall fescue leaves had a greater level of superoxide dismutase (SOD) and guaiacol peroxidase (POD) activity in both cultivars, however, increase was sharp in ‘Silverado’ plants. The results of Q-PCR analysis for genes encoding antioxidant enzyme were in accordance with that of enzyme activities. The higher Pb tolerance of ‘Silverado’ might be attributed to lower shoot Pb concentration and MDA content. Meantime, the amount of soluble protein, activity of SOD and POD, as well as the level of up regulation of Cyt Cu/ZnSOD was all higher in ‘Silverado’ than in ‘AST7001’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Alvarez ME, Lamb C (1997) Oxidative burst-mediated defense responses in plant disease resistance. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Atesi I, Suzen HS, Aydin A, Karakaya A (2004) The oxidative DNA base damage in tests of rats after intraperitoneal cadmium injection. Biometals 17:371–377

    Article  Google Scholar 

  • Begonia MFT, Begonia GB, Ighoavodha M, Okuyiga-Ezem O, Crudup B (2001) Chelate-induced phytoextraction of lead from contaminated soils using tall fescue (Festuca arundinacea). J Miss Acad Sci 46:15

    Google Scholar 

  • Begonia MT, Begonia GB, Ighoavodha M, Gilliard D (2005) Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil. Int J Environ Res Public Health 2:228–233

    Article  CAS  Google Scholar 

  • Bian SM, Jiang YW (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci Hortic-Amsterdam 120:264–270

    Article  CAS  Google Scholar 

  • Boswell FC (1975) Municipal sewage sludge and selected elemental applications to soil: effect on soil and fescue. J Environ Qual 4:267–271

    Article  CAS  Google Scholar 

  • Boucher N, Carpentier R (1999) Hg2+, Cu2+, and Pb2+-induced changes in Photosystem II photochemical yield and energy storage in isolated thylakoid membranes: a study using simultaneous fluorescence and photoacoustis measurements. Photosynth Res 59:167–174

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Phytoarchaeology and hyperaccumulators. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 153–180

    Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120

    Article  CAS  Google Scholar 

  • Byrne SL, Durandeau K, Nagy I, Barth S (2010) Identification of ABC transporters from Lolium perenne L. that are regulated by toxic levels of selenium. Planta 231:901–911

    Article  CAS  Google Scholar 

  • Chance B, Maehly SK (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Dey SK, Dey J, Patra S, Pothal D (2007) Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 19:53–60

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Foito ASL, Byrne SL, Shepherd T, Stewart D, Barth S (2009) Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnol J 7:719–732

    Article  CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  Google Scholar 

  • Gajić G, Mitrović M, Pavlović P, Stevanović B, Djurdjević L, Kostić O (2009) An assessment of the tolerance of Ligustrum ovalifolium Hassk. to traffic-generated Pb using physiological and biochemical markers. Ecotoxicol Environ Saf 72:1090–1101

    Article  Google Scholar 

  • Garza A, Vega R, Soto E (2006) Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12:57–65

    Google Scholar 

  • Heath RN, Packer H (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. California Agr Expt Sta Circ 347:1–32

  • Ibrahim MM, Bafeel SO (2009) Alteration of gene expression, superoxide anion radical and lipid peroxidation induced by lead toxicity in leaves of Lepidium sativum. J Anim Plant Sci 4:281–288

    Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2012) Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J Environ Biol 33:265–269

    CAS  Google Scholar 

  • King LD (1981) Effect of swine manure lagoon sludge and municipal sewage sludge on growth, nitrogen recovery, and heavy metal content of fescue grass. J Environ Qual 10:465–472

    Article  CAS  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161

    Article  CAS  Google Scholar 

  • Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estévez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20:29–36

    Article  Google Scholar 

  • Lanphear BP, Matte TD, Rogers J, Clickner RP, Dietz B, Bornschein RL, Sucop P, Mahaffey KR, Dixon S, Galke W, Rabinowitz M, Farfel M, Rohde C, Schwartz J, Ashley P, Jacobs DE (1998) The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels: a pooled analysis of 12 epidemiologic studies. Environ Res 79:51–68

    Article  CAS  Google Scholar 

  • Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P (2010) Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol 11:1471–2199

    Article  Google Scholar 

  • Li HY, Luo HJ, Li DY, Hu T, Fu JM (2012) Antioxidant enzyme activity and gene expression in response to lead stress in perennial ryegrass. J Am Soc Hortic Sci 137:80–85

    CAS  Google Scholar 

  • Li HY, Hu ZR, Fu JM (2014) Lead tolerance and accumulation in different tall fescue genotypes. Pratac Sci 31:1269–1274

  • Liu JG, Li KQ, Xu JK, Zhang ZJ, Ma TB, Lu XL, Yang JC, Zhu QS (2003) Lead toxicity, uptake, and translocation in different rice cultivars. Plant Sci 165:793–802

    Article  CAS  Google Scholar 

  • Liu W, Shu WS, Lan CY (2004) Viola baoshanensis, a plant that hyperaccumalates cadmium. Sci Bull 49:29–32

    Article  CAS  Google Scholar 

  • Liu JN, Zhou QX, Sun T, Ma LQ, Wang S (2008) Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. J Hazard Mater 151:261–267

    Article  CAS  Google Scholar 

  • Liu T, Liu SY, Guan H, Ma LG, Chen ZL, Gu HY, Qu LJ (2009) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67:377–386

    Article  CAS  Google Scholar 

  • Liu W, Zhou Q, Zhang Y, Wei S (2010) Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. J Environ Manag 91:781–788

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  Google Scholar 

  • Lummerzheim M, Sandroni M, Castresana C, De Oliveira D, Van Montagu M, Roby D, Timmerman B (1995) Comparative microscopic and enzymatic characterization of the leaf necrosis induced in Arabidopsis thaliana by lead nitrate and by Xanthomanas campestris pv. Campestris after foliar spray. Plant Cell Environ 18:499–509

    Article  CAS  Google Scholar 

  • Luo H, Li H, Zhang X, Fu J (2011) Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology 20:770–778

    Article  CAS  Google Scholar 

  • McKersie BD, Chan Y, de Beus M, Bowley SR, Bowler C, Inzé D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Monteiro MS, Santos C, Soares A, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf 72:811–818

    Article  CAS  Google Scholar 

  • Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Article  Google Scholar 

  • Päivöke AEA (2002) Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environ Exp Bot 48:61–73

    Article  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Rio LA (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Parys E, Romanowska E, Siedlecka M, Poskuta J (1998) The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiol Plant 20:13–322

    Article  Google Scholar 

  • Prasad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026

    Article  CAS  Google Scholar 

  • Qu RL, Li D, Du R, Qu R (2003) Lead uptake by roots of four turfgrass species in hydroponic cultures. HortScience 38:623–626

    CAS  Google Scholar 

  • Raskin I, Kumar PBA, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Rastgoo L, Alemzadeh A (2011) Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Aust J Crop Sci 5:375–383

    CAS  Google Scholar 

  • Reddy A, Kumar S, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  Google Scholar 

  • Saifullah Meers E, Qadir M, de Caritat P, Tack FM, Du Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:1279–1291

    Article  CAS  Google Scholar 

  • Sharma P, Dubey R (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Shu X, Yin LY, Zhang QF, Wang WB (2012) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19:893–902

    Article  CAS  Google Scholar 

  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127

    Article  CAS  Google Scholar 

  • Soleimani M, Hajabbasi MA, Afyuni M, Charkhabi AH, Shariatmadari H (2009) Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. CJES 7:59–70

    Google Scholar 

  • Srivastava AK, Venkatachalam P, Raghothama KG, Sahi SV (2007) Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii. Planta 225:1353–1365

    Article  CAS  Google Scholar 

  • Tamura H, Honda M, Sato T, Kamachi H (2005) Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J Plant Res 118:355–359

    Article  Google Scholar 

  • Tanaka K, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S (1999) Salt tolerance of transgenic rice overexpression yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed (Chromolaenaodorata (L.) King & Robinson). Chemosphere 68:323–329

    Article  CAS  Google Scholar 

  • Tsang EWT, Bowler C, Herouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Wang YH, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677

    Article  CAS  Google Scholar 

  • Yang YL, Zhang YY, Wei XL, You J, Wang WR, Lu J, Shi RX (2011) Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicol Environ Saf 74:733–740

    Article  CAS  Google Scholar 

  • Zacchini M, Rea E, Tullio M, de Agazio M (2003) Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. Plant Physiol Biochem 41:49–54

    Article  CAS  Google Scholar 

  • Zeng FR, Mao Y, Cheng WD, Wu FB, Zhang GP (2008) Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ Pollut 153:309–314

    Article  CAS  Google Scholar 

  • Zhang SS, Zhang HM, Qin R, Jiang WS, Liu DH (2009) Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18:814–823

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (No. 31201653 and No. 31272194), and Academy–Locality Cooperation Programme (Project No. 2B201131161101616).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinmin Fu or Huiying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Xie, Y., Jin, G. et al. Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics. Ecotoxicology 24, 563–572 (2015). https://doi.org/10.1007/s10646-014-1404-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1404-6

Keywords

Navigation