Skip to main content

Advertisement

Log in

LY2603618, a selective CHK1 inhibitor, enhances the anti-tumor effect of gemcitabine in xenograft tumor models

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Pharmacological inhibition of CHK1 in the absence of p53 functionality leads to abrogation of the S and G2/M DNA damage checkpoints. We report the preclinical therapeutic activity of LY2603618 (CHK1 inhibitor) at inhibiting CHK1 activation by gemcitabine and enhancing in vivo efficacy. The in vivo biochemical effects of CHK1 inhibition in the absence or presence of DNA damage were measured in human tumor xenograft models. Colon, lung and pancreatic xenografts models were treated with gemcitabine, LY2603618, or gemcitabine plus LY2603618. Gemcitabine treatment alone induced a significant increase in CHK1 autophosphorylation over untreated tumors. Co-administration of LY2603618 with gemcitabine showed a clear inhibition of CHK1 autophosphorylation for at least 24 h. Combining LY2603618 with gemcitabine resulted in an increase in H2AX serine 139 phosphorylation, indicating a corresponding increase in damaged DNA in the tumors. LY2603618 abrogated the S-phase DNA damage checkpoint in Calu-6 xenograft tumors treated with gemcitabine but did not significantly alter the G2/M checkpoint. Combining gemcitabine with LY2603618 resulted in a significant increase in tumor growth inhibition in Calu-6, HT-29 and PAXF 1869 xenografts over gemcitabine treatment alone. The best combination efficacy occurred when LY2603618 was given 24 h following dosing with gemcitabine. LY2603618 worked effectively to remove the S-phase DNA damage checkpoint and increase the DNA damage and the antitumor activity of gemcitabine treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patil M, Pabla N, Dong Z (2013) Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci: CMLS 70(21):4009–4021. doi:10.1007/s00018-013-1307-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20(15):1803–1815. doi:10.1038/sj.onc.1204252

    Article  PubMed  CAS  Google Scholar 

  3. Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res : Off J Am Assoc Cancer Res 16(2):376–383. doi:10.1158/1078-0432.CCR-09-1029

    Article  CAS  Google Scholar 

  4. Nam EA, Cortez D (2011) ATR signalling: more than meeting at the fork. Biochem J 436(3):527–536. doi:10.1042/BJ20102162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W (1991) Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 51(22):6110–6117

    PubMed  CAS  Google Scholar 

  6. Koh SB, Courtin A, Boyce RJ, Boyle RG, Richards FM, Jodrell DI (2015) CHK1 inhibition synergizes with gemcitabine initially by destabilizing the DNA replication apparatus. Cancer Res 75(17):3583–3595. doi:10.1158/0008-5472.CAN-14-3347

    Article  PubMed  CAS  Google Scholar 

  7. Maity A, McKenna WG, Muschel RJ (1994) The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol : J Eur Soc Ther Radiol Oncol 31(1):1–13

    Article  CAS  Google Scholar 

  8. Walworth N, Davey S, Beach D (1993) Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363(6427):368–371. doi:10.1038/363368a0

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Hunter T (2014) Roles of Chk1 in cell biology and cancer therapy. Int J Cancer J Int Cancer 134(5):1013–1023. doi:10.1002/ijc.28226

    Article  CAS  Google Scholar 

  10. Carrassa L, Damia G (2011) Unleashing Chk1 in cancer therapy. Cell Cycle 10(13):2121–2128

    Article  PubMed  CAS  Google Scholar 

  11. Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6(4):1239–1248. doi:10.1158/1535-7163.MCT-06-0633

    Article  PubMed  CAS  Google Scholar 

  12. Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155(5):1088–1103. doi:10.1016/j.cell.2013.10.043

    Article  PubMed  CAS  Google Scholar 

  13. Sakurikar N, Eastman A (2015) Will targeting Chk1 have a role in the future of cancer therapy? J Clin Oncol : Off J Am Soc Clin Oncol 33(9):1075–1077. doi:10.1200/JCO.2014.60.0767

    Article  CAS  Google Scholar 

  14. Walton MI, Eve PD, Hayes A, Henley AT, Valenti MR, De Haven Brandon AK, Box G, Boxall KJ, Tall M, Swales K, Matthews TP, McHardy T, Lainchbury M, Osborne J, Hunter JE, Perkins ND, Aherne GW, Reader JC, Raynaud FI, Eccles SA, Collins I, Garrett MD (2015) The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Emicro-MYC driven B-cell lymphoma. Oncotarget

  15. Massey AJ, Stokes S, Browne H, Foloppe N, Fiumana A, Scrace S, Fallowfield M, Bedford S, Webb P, Baker L, Christie M, Drysdale MJ, Wood M (2015) Identification of novel, in vivo active Chk1 inhibitors utilizing structure guided drug design. Oncotarget

  16. Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S (2013) Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Investig New Drugs 31(1):136–144. doi:10.1007/s10637-012-9815-9

    Article  CAS  Google Scholar 

  17. Calvo E, Chen VJ, Marshall M, Ohnmacht U, Hynes SM, Kumm E, Diaz HB, Barnard D, Merzoug FF, Huber L, Kays L, Iversen P, Calles A, Voss B, Lin AB, Dickgreber N, Wehler T, Sebastian M (2014) Preclinical analyses and phase I evaluation of LY2603618 administered in combination with pemetrexed and cisplatin in patients with advanced cancer. Investig New Drugs 32(5):955–968. doi:10.1007/s10637-014-0114-5

    Article  CAS  Google Scholar 

  18. Doi T, Yoshino T, Shitara K, Matsubara N, Fuse N, Naito Y, Uenaka K, Nakamura T, Hynes SM, Lin AB (2015) Phase I study of LY2603618, a CHK1 inhibitor, in combination with gemcitabine in Japanese patients with solid tumors. Anti-Cancer Drugs 26(10):1043–1053. doi:10.1097/CAD.0000000000000278

    Article  PubMed  CAS  Google Scholar 

  19. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338–350. doi:10.1038/nrclinonc.2012.61

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. King C, Diaz H, Barnard D, Barda D, Clawson D, Blosser W, Cox K, Guo S, Marshall M (2014) Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Investig New Drugs 32(2):213–226. doi:10.1007/s10637-013-0036-7

    Article  CAS  Google Scholar 

  21. Merriman RL, Hertel LW, Schultz RM, Houghton PJ, Houghton JA, Rutherford PG, Tanzer LR, Boder GB, Grindey GB (1996) Comparison of the antitumor activity of gemcitabine and ara-C in a panel of human breast, colon, lung and pancreatic xenograft models. Investig New Drugs 14(3):243–247

    Article  CAS  Google Scholar 

  22. Low J, Shuguang H, Dowless M, Blosser W, Vincent T, Davis S, Hodson J, Koller E, Marcusson E, Blanchard K, Stancato L (2007) High-content imaging analysis of the knockdown effects of validated siRNAs and antisense oligonucleotides. J Biomol Screen 12(6):775–788. doi:10.1177/1087057107302675

    Article  PubMed  CAS  Google Scholar 

  23. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  25. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498. doi:10.1038/ng.806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv:12073907v2 [q-bioGN]

  27. Hui YF, Reitz J (1997) Gemcitabine: a cytidine analogue active against solid tumors. Am J Health-Syst Pharm : AJHP : Off J Am Soc Health-Syst Pharm 54(2):162–170, quiz 197–168

    CAS  Google Scholar 

  28. Montano R, Thompson R, Chung I, Hou H, Khan N, Eastman A (2013) Sensitization of human cancer cells to gemcitabine by the Chk1 inhibitor MK-8776: cell cycle perturbation and impact of administration schedule in vitro and in vivo. BMC Cancer 13:604. doi:10.1186/1471-2407-13-604

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leung-Pineda V, Ryan CE, Piwnica-Worms H (2006) Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol Cell Biol 26(20):7529–7538. doi:10.1128/MCB.00447-06

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ, Vroman BT, Thomas MB, Baek YU, Hopkins KM, Lieberman HB, Chen J, Cliby WA, Kaufmann SH (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68(6):1636–1644. doi:10.1124/mol.105.012716

    PubMed  CAS  Google Scholar 

  31. Eriksson S, Graslund A, Skog S, Thelander L, Tribukait B (1984) Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunit M2 is regulated by de novo protein synthesis. J Biol Chem 259(19):11695–11700

    PubMed  CAS  Google Scholar 

  32. Del Nagro CJ, Choi J, Xiao Y, Rangell L, Mohan S, Pandita A, Zha J, Jackson PK, O’Brien T (2014) Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death. Cell Cycle 13(2):303–314. doi:10.4161/cc.27055

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tao ZF, Lin NH (2006) Chk1 inhibitors for novel cancer treatment. Anti Cancer Agents Med Chem 6(4):377–388

    Article  CAS  Google Scholar 

  34. Tang J, Erikson RL, Liu X (2006) Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1). Proc Natl Acad Sci U S A 103(32):11964–11969. doi:10.1073/pnas.0604987103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ, Denny WA, Canman CE, Kraker AJ, Lawrence TS, Maybaum J (2009) Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 8(1):45–54. doi:10.1158/1535-7163.MCT-08-0662

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS (2005) Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65(15):6835–6842. doi:10.1158/0008-5472.CAN-04-2246

    Article  PubMed  CAS  Google Scholar 

  37. Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO, Tai A, Wagner JM, Miller N, Kim YD, Robertson S, Murray L, Karnitz LM (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6(1):104–110

    Article  PubMed  CAS  Google Scholar 

  38. Ross WE, Bradley MO (1981) DNA double-stranded breaks in mammalian cells after exposure to intercalating agents. Biochim Biophys Acta 654(1):129–134

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez Besteiro MA, Gottifredi V (2015) The fork and the kinase: a DNA replication tale from a CHK1 perspective. Mutat Res Rev Mutat Res 763:168–180. doi:10.1016/j.mrrev.2014.10.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Juan G, Traganos F, James WM, Ray JM, Roberge M, Sauve DM, Anderson H, Darzynkiewicz Z (1998) Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 32(2):71–77

    Article  PubMed  CAS  Google Scholar 

  41. Miller CW, Ikezoe T, Krug U, Hofmann WK, Tavor S, Vegesna V, Tsukasaki K, Takeuchi S, Koeffler HP (2002) Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Genes Chromosome Cancer 33(1):17–21

    Article  CAS  Google Scholar 

  42. Ahn J, Urist M, Prives C (2004) The Chk2 protein kinase. DNA Repair 3(8–9):1039–1047. doi:10.1016/j.dnarep.2004.03.033

    Article  PubMed  CAS  Google Scholar 

  43. Chen T, Stephens PA, Middleton FK, Curtin NJ (2012) Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today 17(5–6):194–202. doi:10.1016/j.drudis.2011.12.009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to recognize the essential contributions of the original CHK1 biology and medicinal chemistry team members formerly located at Icos Pharmaceuticals: Phyllis Goldman, Erik Christenson, Darcey Clark, Jeff Dantzler, Frank Diaz, Heather Douanpanya, Francine Farouz, Ryan Holcomb, Angela Judkins, Adam Kashishian, Ed Kesicki, Kim McCaw, Harch Ooi, Vanessa Rada, Fuqiang Ruan, Alex Rudolf, Frank Stappenbeck, Janelle Taylor, Gene Thorsett, Jen Treiberg, Margaret Weidner and Steve White. We would also like to thank Steven Bray for DNA sequencing and analysis as well as Eric Westin and Aimee Bence Lin for intellectual input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Marshall.

Ethics declarations

Conflict of interest

The authors, Darlene Barnard, H. Bruce Diaz, Teresa Burke, Gregory Donoho, Richard Beckmann, Bonita Jones, David Barda, Constance King and Mark Marshall are all employees of the Eli Lilly Company, which supports the development of LY2603618.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnard, D., Diaz, H.B., Burke, T. et al. LY2603618, a selective CHK1 inhibitor, enhances the anti-tumor effect of gemcitabine in xenograft tumor models. Invest New Drugs 34, 49–60 (2016). https://doi.org/10.1007/s10637-015-0310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0310-y

Keywords

Navigation