Skip to main content

Advertisement

Log in

Estimating ON and OFF contributions to the photopic hill: normative data and clinical applications

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Background

With progressively brighter stimuli, the amplitude of the b-wave of the human photopic electroretinogram (ERG) first increases to a maximal value (V max) and then decreases to finally reach a plateau, a phenomenon known as the photopic hill (PH). A mathematical model combining a Gaussian (G) and a logistic (L) growth function was previously proposed to fit this unusual luminance-response curve, where the G and L functions were suggested to represent, respectively, the OFF and ON retinal pathway contributions to the building of the PH.

Method

The PHs of patients presenting stationary diseases affecting specifically the ON (3 CSNB-1) or OFF (4 CPCPA) retinal pathways as well as patients affected with retinitis pigmentosa (14 RP) of different stages or etiology were analyzed using this mathematical model and compared to the PHs of a group of 28 normal subjects.

Results

The PH of the CSNB-1 patients had a much larger contribution from the G function compared to normal subjects, whereas the opposite was observed for the CPCPA patients. On the other hand, analysis of data from RP patients revealed variable GL contributions to the building of their PH.

Conclusion

In this study, we confirm the previous claim that the luminance-response function of the photopic ERG b-wave can be decomposed into a Gaussian function and a logistic growth function representing, respectively, the OFF and ON retinal pathways. Furthermore, our findings suggest that this mathematical decomposition could be useful to further segregate and potentially follow the progression of retinopathies such as RP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamilton R, Bees MA, Chaplin CA, McCulloch DL (2007) The luminance-response function of the human photopic electroretinogram: a mathematical model. Vision Res 47(23):2968–2972

    Article  CAS  PubMed  Google Scholar 

  2. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80(4):335–345

    Article  CAS  Google Scholar 

  3. Wali N, Leguire LE (1993) Fundus pigmentation and the electroretinographic luminance-response function. Doc Ophthalmol 84(1):61–69

    Article  CAS  PubMed  Google Scholar 

  4. Kondo M, Piao CH, Tanikawa A, Horiguchi M, Terasaki H, Miyake Y (2000) Amplitude decrease of photopic ERG b-wave at higher stimulus intensities in humans. Jap J Ophthalmol 44:20–28

    Article  CAS  Google Scholar 

  5. Rufiange M, Dassa J, Dembinska O, Koenekoop RK, Little JM, Polomeno RC, Dumont M, Chemtob S, Lachapelle P (2003) The photopic ERG luminance-response function (photopic hill): method of analysis and clinical application. Vision Res 43:1405–1412

    Article  PubMed  Google Scholar 

  6. Rufiange M, Dumont M, Lachapelle P (2005) Modulation of the human photopic ERG luminance-response function with the use of chromatic stimuli. Vision Res 45:2321–2330

    Article  PubMed  Google Scholar 

  7. Rufiange M, Rousseau S, Dembinska O, Lachapelle P (2002) Cone-dominated ERG luminance-response function: the photopic hill revisited. Doc Ophthalmol 104(3):231–248

    Article  PubMed  Google Scholar 

  8. Ueno S, Kondo M, Niwa S, Terasaki H, Miyake Y (2004) Luminance dependence of neural components that underlies the primate photopic electroretinogram. Invest Ophthalmol Vis Sci 45:1033–1040

    Article  PubMed  Google Scholar 

  9. Garon M-L, Rufiange M, Hamilton R, McCulloch DL, Lachapelle P (2010) Asymetrical growth of the photopic ERG during the light adaptation effect. Doc Ophthalmol 121:177–187

    Article  PubMed  Google Scholar 

  10. Naka KI, Rushton AH (1966) S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol 185:536–555

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Miyake Y, Yagasaki K, Horigushi M, Kawase Y (1987) On- and off-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Jap J Ophthalmol 31(1):81–87

    CAS  Google Scholar 

  12. Quigley M, Roy MS, Barsoum-Homsy M, Chevrette L, Jacob JL, Milot J (1996–1997) On- and off-responses in the photopic electroretinogram in complete-type congenital stationary night blindness. Doc Ophthalmol 92(3):159–165

  13. Langrová H, Gamer D, Friedburg C, Besch D, Zrenner E, Apfelstedt-Sylla E (2002) Abnormalities of the long flash ERG in congenital stationary night blindness of the Schubert–Bornschein type. Vision Res 42(11):1475–1483

    Article  PubMed  Google Scholar 

  14. Pusch CM, Zeitz C, Brandau O, Pesch K, Achatz H, Feil S, Scharfe C, Maurer J, Jacobi FK, Pinckers A, Andreasson S, Hardcastle A, Wissinger B, Berger W, Meindl A (2000) The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet 26(3):324–327

    Article  CAS  PubMed  Google Scholar 

  15. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG, Bergen AA, Prinsen CF, Polomeno RC, Gal A, Drack AV, Musarella MA, Jacobson SG, Young RS, Weleber RG (2000) Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26(3):319–323

    Article  CAS  PubMed  Google Scholar 

  16. Dryja TP, McGee TL, Berson EL, Fishman GA, Sandberg MA, Alexander KR, Derlacki DJ, Rajagopalan AS (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102(13):4884–4889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zeitz C, Kloeckener-Gruissem B, Forster U, Kohl S, Magyar I, Wissinger B, Mátyás G, Borruat FX, Schorderet DF, Zrenner E, Munier FL, Berger W (2006) Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am J Hum Genet 79(4):657–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Morgans CW, Ren G, Akileswaran L (2006) Localization of nyctalopin in the mammalian retina. Eur J Neurosci 23(5):1163–1171

    Article  PubMed  Google Scholar 

  19. Slaughter MM, Miller RF (1985) Characterization of an extended glutamate receptor of the on bipolar neuron in the vertebrate retina. J Neurosci 5(1):224–233

    CAS  PubMed  Google Scholar 

  20. Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268(16):11868–11873

    CAS  PubMed  Google Scholar 

  21. Gregg RG, Kamermans M, Klooster J, Lukasiewicz PD, Peachey NS, Vessey KA, McCall MA (2007) Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. J Neurophysiol 98(5):3023–3033

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bahadori R, Biehlmaier O, Zeitz C, Labhart T, Makhankov YV, Forster U, Gesemann M, Berger W, Neuhauss SC (2006) Nyctalopin is essential for synaptic transmission in the cone dominated zebrafish retina. Eur J Neurosci 24(6):1664–1674

    Article  PubMed  Google Scholar 

  23. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77

    Article  CAS  PubMed  Google Scholar 

  24. Lachapelle P, Rousseau S, McKerral M, Benoit J, Polomeno RC, Koenekoop RK, Little JM (1998) Evidence supportive of a functional discrimination between photopic oscillatory potentials as revealed with cone and rod mediated retinopathies. Doc Ophthalmol 95(1):35–54

    Article  CAS  PubMed  Google Scholar 

  25. Heckenlively JR, Martin DA, Rosenbaum AL (1983) Loss of electroretinographic oscillatory potentials, optic atrophy, and dysplasia in congenital stationary night blindness. Am J Ophthalmol 96(4):526–534

    CAS  PubMed  Google Scholar 

  26. Lachapelle P, Little JM, Polomeno RC (1983) The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci 24(4):442–450

    CAS  PubMed  Google Scholar 

  27. Dowling JE (1987) The retina: an approachable part of the brain. The Belknap press of Harvard University Press, Cambridge

    Google Scholar 

  28. Rivolta C, Sharon D, DeAngelis MM, Dryja TP (2002) Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet 11(10):1219–1227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the McGill University-Montreal Children’s Hospital Research Institute, the Foundation Fighting Blindness (USA) and FRSQ-Réseau-Vision Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lachapelle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garon, ML., Dorfman, A.L., Racine, J. et al. Estimating ON and OFF contributions to the photopic hill: normative data and clinical applications. Doc Ophthalmol 129, 9–16 (2014). https://doi.org/10.1007/s10633-014-9446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-014-9446-x

Keywords

Navigation