Skip to main content

Advertisement

Log in

Evidence for a critical role of panretinal pathophysiology in experimental ROP

  • Review Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

In this review, we summarize our in vivo studies of retinal pathophysiology in experimental models of retinopathy of prematurity, which were largely focused on the temporal and spatial links between retinal neovascularization (NV), vascular oxygenation, and intraretinal ion regulation. These studies were made possible through the use of magnetic resonance methods. Prior to the phenotype change from normal vessel development to NV, we found little support for a pathogenic role of focal retinal hypoxia at the border of vascular and avascular retina. However, key links were found between retinal NV and functional panretinal defects in both oxygenation to a provocation and intraretinal ion regulation. Through a treatment which reduced NV incidence but not panretinal pathophysiology, proliferative disease was found to last longer than that in the untreated group. These considerations provide compelling evidence that clinical attention directed toward reducing retinal NV should include approaches that reduce functional panretinal pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. The STOP-ROP Multicenter Study Group (2000) Supplemental therapeutic oxygen for prethreshhold retinopathy of prematurity (STOP-ROP), a randomized, controlled trial. I. Primary outcomes. Pediatrics 105:295–310. doi:10.1542/peds.105.2.295

    Article  Google Scholar 

  2. McGregor ML, Bremer DL, Cole C et al (2002) Retinopathy of prematurity outcome in infants with prethreshold retinopathy of prematurity and oxygen saturation >94% in room air: the high oxygen percentage in retinopathy of prematurity study. Pediatrics 110:540–544. doi:10.1542/peds.110.3.540

    Article  PubMed  Google Scholar 

  3. Anonymous (2001) Multicenter trial of cryotherapy for retinopathy of prematurity: ophthalmological outcomes at 10 years. Arch Ophthalmol 119:1110–1118 Abstract

    Google Scholar 

  4. Roberto KA, Tolman BL, Penn JS (1996) Long-term retinal vascular abnormalities in an animal model of retinopathy of prematurity. Curr Eye Res 15:932–937. doi:10.3109/02713689609017637

    Article  PubMed  CAS  Google Scholar 

  5. Luan H, Roberts R, Sniegowski M, Goebel DJ, Berkowitz BA (2006) Retinal thickness and subnormal retinal oxygenation response in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci 47:320–328. doi:10.1167/iovs.05-0272

    Article  PubMed  Google Scholar 

  6. Berkowitz BA, Roberts R, Luan H, Peysakhov J, Mao X, Thomas KA (2004) Dynamic contrast-enhanced MRI measurements of passive permeability through blood retinal barrier in diabetic rats. Invest Ophthalmol Vis Sci 45:2391–2398. doi:10.1167/iovs.03-1381

    Article  PubMed  Google Scholar 

  7. Sander B, Thornit DN, Colmorn L et al (2007) Progression of diabetic macular edema: correlation with blood retinal barrier permeability, retinal thickness, and retinal vessel diameter. Invest Ophthalmol Vis Sci 48:3983–3987. doi:10.1167/iovs.06-1102

    Article  PubMed  Google Scholar 

  8. Fulton AB, Hansen RM, Moskowitz A, Barnaby AM (2005) Multifocal ERG in subjects with a history of retinopathy of prematurity. Doc Ophthalmol 111:7–13. doi:10.1007/s10633-005-2621-3

    Article  PubMed  Google Scholar 

  9. Berkowitz BA, Tofts PS, Sen HA, Ando N, de Juan E Jr (1992) Accurate and precise measurement of blood-retinal barrier breakdown using dynamic Gd-DTPA MRI. Invest Ophthalmol Vis Sci 33:3500–3506

    PubMed  CAS  Google Scholar 

  10. Berkowitz BA, Roberts R, Luan H et al (2007) Manganese-enhanced MRI studies of alterations of intraretinal ion demand in models of ocular injury. Invest Ophthalmol Vis Sci 48:3796–3804. doi:10.1167/iovs.06-1278

    Article  PubMed  Google Scholar 

  11. Berkowitz BA, Roberts R, Goebel DJ, Luan H (2006) Noninvasive and simultaneous imaging of layer-specific retinal functional adaptation by manganese-enhanced MRI. Invest Ophthalmol Vis Sci 47:2668–2674. doi:10.1167/iovs.05-1588

    Article  PubMed  Google Scholar 

  12. Berkowitz BA, Bansal N, Wilson CA (1994) Non-invasive measurement of steady-state vitreous lactate concentration. NMR Biomed 7:263–268. doi:10.1002/nbm.1940070603

    Article  PubMed  CAS  Google Scholar 

  13. Berkowitz BA, Garner MH, Wilson CA, Corbett RJ (1995) Nondestructive measurement of retinal glucose transport and consumption in vivo using NMR spectroscopy. J Neurochem 64:2325–2331

    Article  PubMed  CAS  Google Scholar 

  14. Berkowitz BA (1996) Adult and newborn rat inner retinal oxygenation during carbogen and 100% oxygen breathing. Comparison using magnetic resonance imaging delta PO2 mapping. Invest Ophthalmol Vis Sci 37:2089–2098

    PubMed  CAS  Google Scholar 

  15. Cheng H, Nair G, Walker TA et al (2006) Structural and functional MRI reveals multiple retinal layers. Proc Natl Acad Sci USA 103:17525–17530. doi:10.1073/pnas.0605790103

    Article  PubMed  CAS  Google Scholar 

  16. Kaneda MM, Caruthers S, Lanza GM, Wickline SA (2009) Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng. doi:10.1007/s10439-009-9643-z

  17. Hughes S, Yang H, Chan-Ling T (2000) Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 41:1217–1228

    PubMed  CAS  Google Scholar 

  18. Zhang W, Ito Y, Berlin E, Roberts R, Luan H, Berkowitz BA (2003) Specificity of subnormal deltaPO2 for retinal neovascularization in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 44:3551–3555. doi:10.1167/iovs.03-0008

    Article  PubMed  Google Scholar 

  19. Penn JS, Henry MM, Wall PT, Tolman BL (1995) The range of PaO2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Invest Ophthalmol Vis Sci 36:2063–2070

    PubMed  CAS  Google Scholar 

  20. Zhang W, Ito Y, Berlin E, Roberts R, Berkowitz BA (2003) Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 44:3119–3123. doi:10.1167/iovs.02-1122

    Article  PubMed  Google Scholar 

  21. Berkowitz BA (2008) Hypoxia and retinal neovascularization. In: Penn J (ed) Retinal and choroidal angiogenesis, pp 151–168. Springer, The Netherlands

  22. Phelps DL (1988) Reduced severity of oxygen-induced retinopathy in kittens recovered in 28% oxygen. Pediatr Res 24:106–109. doi:10.1203/00006450-198807000-00024

    Article  PubMed  CAS  Google Scholar 

  23. Tailoi CL, Gock B, Stone J (1995) Supplemental oxygen therapy. Basis for noninvasive treatment of retinopathy of prematurity. Invest Ophthalmol Vis Sci 36:1215–1230

    PubMed  CAS  Google Scholar 

  24. Berkowitz BA, Zhang W (2000) Significant reduction of the panretinal oxygenation response after 28% supplemental oxygen recovery in experimental ROP. Invest Ophthalmol Vis Sci 41:1925–1931

    PubMed  CAS  Google Scholar 

  25. Anonymous (2000) Supplemental therapeutic oxygen for prethreshold retinopathy of prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics 105:295–310. doi:10.1542/peds.105.2.295

    Article  Google Scholar 

  26. Berkowitz BA, Berlin ES, Zhang W (2001) Variable supplemental oxygen during recovery does not reduce retinal neovascular severity in experimental ROP. Curr Eye Res 22:401–404. doi:10.1076/ceyr.22.6.401.5484

    Article  PubMed  CAS  Google Scholar 

  27. Chan-Ling T, Gock B, Stone J (1995) The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 36:1201–1214

    PubMed  CAS  Google Scholar 

  28. Pournaras CJ (1995) Retinal oxygen distribution. Its role in the physiopathology of vasoproliferative microangiopathies. Retina 15:332–347. doi:10.1097/00006982-199515040-00011

    Article  PubMed  CAS  Google Scholar 

  29. Bellhorn RW, Lipman DA, Confino J, Burns MS (1981) Effect of monosodium glutamate on retinal vessel development and permeability in rats. Invest Ophthalmol Vis Sci 21:237–247

    PubMed  CAS  Google Scholar 

  30. Townes-Anderson E, Raviola G (1982) Morphology and permeability of blood vessels in the prenatal rhesus monkey eye: how plasma components diffuse into the intraocular fluids during development. Exp Eye Res 35:203–230. doi:10.1016/S0014-4835(82)80046-8

    Article  PubMed  CAS  Google Scholar 

  31. Tilton RG, Pugliese G, Chang K et al (1989) Effects of hypothyroidism on vascular 125I-albumin permeation and blood flow in rats. Metabolism 38:471–478. doi:10.1016/0026-0495(89)90201-1

    Article  PubMed  CAS  Google Scholar 

  32. Takiguchi Y, Satoh N, Hashimoto H, Nakashima M (1988) Changes in vascular reactivity in experimental diabetic rats: comparison with hypothyroid rats. Blood Vessels 25:250–260

    PubMed  CAS  Google Scholar 

  33. Sevilla-Romero E, Munoz A, Pinazo-Duran MD (2002) Low thyroid hormone levels impair the perinatal development of the rat retina. Ophthalmic Res 34:181–191. doi:10.1159/000063885

    Article  PubMed  CAS  Google Scholar 

  34. Navegantes LC, Silveira LC, Santos GL (1996) Effect of congenital hypothyroidism on cell density in the ganglion cell layer of the rat retina. Braz J Med Biol Res 29:665–668

    PubMed  CAS  Google Scholar 

  35. Hellstrom A, Perruzzi C, Ju M et al (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA 98:5804–5808. doi:10.1073/pnas.101113998

    Article  PubMed  CAS  Google Scholar 

  36. Berkowitz BA, Luan H, Roberts RL (2004) Effect of methylimidazole-induced hypothyroidism in a model of low retinal neovascular incidence. Invest Ophthalmol Vis Sci 45:919–921. doi:10.1167/iovs.03-0914

    Article  PubMed  Google Scholar 

  37. Flower RW, Blake DA (1981) Retrolental fibroplasia: evidence for a role of the prostaglandin cascade in the pathogenesis of oxygen-induced retinopathy in the newborn beagle. Pediatr Res 15:1293–1302

    PubMed  CAS  Google Scholar 

  38. Flower RW, McLeod DS, Wajer SD, Sendi GS, Egner PG, Dubin NH (1984) Prostaglandins as mediators of vasotonia in the immature retina. Pediatrics 73:440–444

    PubMed  CAS  Google Scholar 

  39. Berkowitz BA, Kowluru RA, Frank RN, Kern TS, Hohman TC, Prakash M (1999) Subnormal retinal oxygenation response precedes diabetic-like retinopathy. Invest Ophthalmol Vis Sci 40:2100–2105

    PubMed  CAS  Google Scholar 

  40. Berkowitz BA, Penn JS (1998) Abnormal panretinal response pattern to carbogen inhalation in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 39:840–845

    PubMed  CAS  Google Scholar 

  41. Berkowitz BA (1997) Role of dissolved plasma oxygen in hyperoxia-induced contrast. Magn Reson Imaging 15:123–126. doi:10.1016/S0730-725X(96)00230-5

    Article  PubMed  CAS  Google Scholar 

  42. Berkowitz BA, Wilson CA (1995) Quantitative mapping of ocular oxygenation using magnetic resonance imaging. Magn Reson Med 33:579–581. doi:10.1002/mrm.1910330419

    Article  PubMed  CAS  Google Scholar 

  43. Yu DY, Cringle SJ, Alder V, Su EN (1999) Intraretinal oxygen distribution in the rat with graded systemic hyperoxia and hypercapnia. Invest Ophthalmol Vis Sci 40:2082–2087

    PubMed  CAS  Google Scholar 

  44. Berkowitz BA, Luan H, Gupta RR et al (2004) Regulation of the early subnormal retinal oxygenation response in experimental diabetes by inducible nitric oxide synthase. Diabetes 53:173–178. doi:10.2337/diabetes.53.1.173

    Article  PubMed  CAS  Google Scholar 

  45. Luan H, Leitges M, Gupta RR et al (2004) Effect of PKCbeta on retinal oxygenation response in experimental diabetes. Invest Ophthalmol Vis Sci 45:937–942. doi:10.1167/iovs.03-1007

    Article  PubMed  Google Scholar 

  46. Roberts R, Zhang W, Ito Y, Berkowitz BA (2003) Spatial pattern and temporal evolution of retinal oxygenation response in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 44:5315–5320. doi:10.1167/iovs.03-0415

    Article  PubMed  Google Scholar 

  47. Berkowitz BA, McDonald C, Ito Y, Tofts PS, Latif Z, Gross J (2001) Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med 46:412–416. doi:10.1002/mrm.1206

    Article  PubMed  CAS  Google Scholar 

  48. Berkowitz BA, Lukaszew RA, Mullins CM, Penn JS (1998) Impaired hyaloidal circulation function and uncoordinated ocular growth patterns in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 39:391–396

    PubMed  CAS  Google Scholar 

  49. Reynaud X, Hansen RM, Fulton AB (1995) Effect of prior oxygen exposure on the electroretinographic responses of infant rats. Invest Ophthalmol Vis Sci 36:2071–2079

    PubMed  CAS  Google Scholar 

  50. Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E (1996) Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 37:290–299

    PubMed  CAS  Google Scholar 

  51. Robbins SG, Conaway JR, Ford BL, Roberto KA, Penn JS (1997) Detection of vascular endothelial growth factor (VEGF) protein in vascular and non-vascular cells of the normal and oxygen-injured rat retina. Growth Factors 14:229–241. doi:10.3109/08977199709021522

    Article  PubMed  CAS  Google Scholar 

  52. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2007) Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol 504:404–417. doi:10.1002/cne.21449

    Article  PubMed  CAS  Google Scholar 

  53. Gendron RL, Good WV, Miskiewicz E, Tucker S, Phelps DL, Paradis H (2006) Tubedown-1 (Tbdn-1) suppression in oxygen-induced retinopathy and in retinopathy of prematurity. Mol Vis 12:108–116

    PubMed  CAS  Google Scholar 

  54. Liu K, Akula JD, Falk C, Hansen RM, Fulton AB (2006) The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 47:2639–2647. doi:10.1167/iovs.06-0016

    Article  PubMed  Google Scholar 

  55. Akula JD, Mocko JA, Benador IY et al (2008) The neurovascular relation in oxygen-induced retinopathy. Mol Vis 14:2499–2508

    PubMed  CAS  Google Scholar 

  56. Dorfman A, Dembinska O, Chemtob S, Lachapelle P (2008) Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest Ophthalmol Vis Sci 49:458–466. doi:10.1167/iovs.07-0916

    Article  PubMed  Google Scholar 

  57. Zhang S, Leske DA, Lanier WL, Berkowitz BA, Holmes JM (2001) Preretinal neovascularization associated with acetazolamide-induced systemic acidosis in the neonatal rat. Invest Ophthalmol Vis Sci 42:1066–1071

    PubMed  CAS  Google Scholar 

  58. Holmes JM, Zhang S, Leske DA, Lanier WL (1999) Metabolic acidosis-induced retinopathy in the neonatal rat. Invest Ophthalmol Vis Sci 40:804–809

    PubMed  CAS  Google Scholar 

  59. Berdahl JP, Leske DA, Fautsch MP, Lanier WL, Holmes JM (2005) Effect of bicarbonate on retinal vasculature and acidosis-induced retinopathy in the neonatal rat. Graefes Arch Clin Exp Ophthalmol 243:367–373. doi:10.1007/s00417-004-0997-5

    Article  PubMed  CAS  Google Scholar 

  60. Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38:378–388. doi:10.1002/mrm.1910380305

    Article  PubMed  CAS  Google Scholar 

  61. Yu X, Wadghiri YZ, Sanes DH, Turnbull DH (2005) In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 8:961–968

    PubMed  CAS  Google Scholar 

  62. Berkowitz BA, Roberts R, Luan H et al (2007) Manganese-enhanced MRI studies of alterations of intraretinal ion demand in models of ocular injury. Invest Ophthalmol Vis Sci 48:3796–3804. doi:10.1167/iovs.06-1278

    Article  PubMed  Google Scholar 

  63. Berkowitz BA, Roberts R, Penn JS, Gradianu M (2007) High-resolution manganese-enhanced MRI of experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 48:4733–4740. doi:10.1167/iovs.06-1516

    Article  PubMed  Google Scholar 

  64. Trick GL, Berkowitz BA (2005) Retinal oxygenation response and retinopathy. Prog Retin Eye Res 24:259–274. doi:10.1016/j.preteyeres.2004.08.001

    Article  PubMed  CAS  Google Scholar 

  65. Roberts R, Luan H, Berkowitz BA (2006) Alpha-lipoic acid corrects late-phase supernormal retinal oxygenation response in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci 47:4077–4082. doi:10.1167/iovs.06-0464

    Article  PubMed  Google Scholar 

  66. Ando N, Sen HA, Berkowitz BA, Wilson CA, de Juan E Jr (1994) Localization and quantitation of blood-retinal barrier breakdown in experimental proliferative vitreoretinopathy. Arch Ophthalmol 112:117–122

    PubMed  CAS  Google Scholar 

  67. Berkowitz BA, Wilson CA, Tofts PS, Peshock RM (1994) Effect of vitreous fluidity on the measurement of blood-retinal barrier permeability using contrast-enhanced MRI. Magn Reson Med 31:61–66. doi:10.1002/mrm.1910310110

    Article  PubMed  CAS  Google Scholar 

  68. Tofts PS, Berkowitz BA (1994) Measurement of capillary permeability from the Gd enhancement curve: a comparison of bolus and constant infusion injection methods. Magn Reson Imaging 12:81–91. doi:10.1016/0730-725X(94)92355-8

    Article  PubMed  CAS  Google Scholar 

  69. Sen HA, Berkowitz BA, Ando N, de Juan E Jr (1992) In vivo imaging of breakdown of the inner and outer blood-retinal barriers. Invest Ophthalmol Vis Sci 33:3507–3512

    PubMed  CAS  Google Scholar 

  70. Berkowitz BA, Sato Y, Wilson CA, de Juan E (1991) Blood-retinal barrier breakdown investigated by real-time magnetic resonance imaging after gadolinium-diethylenetriaminepentaacetic acid injection. Invest Ophthalmol Vis Sci 32:2854–2860

    PubMed  CAS  Google Scholar 

  71. Duong TQ, Ngan SC, Ugurbil K, Kim SG (2002) Functional magnetic resonance imaging of the retina. Invest Ophthalmol Vis Sci 43:1176–1181

    PubMed  Google Scholar 

  72. Rucker JC, Biousse V, Mao H, Sandbach J, Constantinidis I, Newman NJ (2003) Detection of lactate in the human vitreous body using proton magnetic resonance spectroscopy. Arch Ophthalmol 121:909–911. doi:10.1001/archopht.121.6.909

    Article  PubMed  Google Scholar 

  73. Ngumah QC, Buchthal SD, Dacheux RF (2006) Longitudinal non-invasive proton NMR spectroscopy measurement of vitreous lactate in a rabbit model of ocular hypertension. Exp Eye Res 83:390–400. doi:10.1016/j.exer.2006.01.015

    Article  PubMed  CAS  Google Scholar 

  74. Berkowitz BA, Wilson CA (1993) A direct method for investigating vitreous glucose turnover in vivo. Invest Ophthalmol Vis Sci 34:1279

    Google Scholar 

Download references

Acknowledgements

Funding support from National Institutes of Health Grant EY018109 and an unrestricted grant from Research to Prevent Blindness is gratefully acknowledged. We thank Dave Bissig for his careful reading of and thoughtful suggestions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Berkowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkowitz, B.A., Roberts, R. Evidence for a critical role of panretinal pathophysiology in experimental ROP. Doc Ophthalmol 120, 13–24 (2010). https://doi.org/10.1007/s10633-009-9175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-009-9175-8

Keywords

Navigation