Skip to main content
Log in

Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with variational transfer operators

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Fluid flow in rough fractures and the coupling with the mechanical behaviour of the fractures pose great difficulties for numerical modeling approaches due to complex fracture surface topographies, the non-linearity of hydro-mechanical processes and their tightly coupled nature. To this end, we have adapted a fictitious domain method to enable the simulation of hydro-mechanical processes in fracture intersections. The main characteristic of the method is the immersion of the fracture, modelled as a linear elastic solid, in the surrounding computational fluid domain, modelled with the incompressible Navier-Stokes equations. The fluid and the solid problems are coupled with variational transfer operators. Variational transfer operators are also used to solve contact within the fracture using a dual mortar approach and to generate problem-specific fluid meshes. With respect to our applications, the key features of the method are the usage of different finite element discretizations for the solid and the fluid problem and the automatically generated representation of the fluid-solid boundary. We demonstrate that the presented methodology resolves small-scale roughness on the fracture surface, while capturing fluid flow field changes during mechanical loading. Starting with 2D/3D benchmark simulations of intersected fractures, we end with an intersected fracture composed of complex fracture surface topographies, which are in contact under increasing loads. The contributions of this article are as follows: (1) the application of the fictitious domain method to study flow in fractures with intersections, (2) a mortar-based contact solver for the solid problem, (3) generation of problem-specific grids using the geometry information from the variational transfer operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner, T., Maurer, H., Giardini, D.: The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment. Solid Earth 9(1), 115–137 (2018)

    Google Scholar 

  2. Autodesk Inc. Fusion 360. https://www.autodesk.com/products/fusion-360,2019.Online;accessed01-May-2019

  3. Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., Zampini, S., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.6, Argonne National Laboratory (2015)

  4. Bandis, S., Lumsden, A., Barton, N.: Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstract. 20(6), 249–268 (1983)

    Google Scholar 

  5. Barton, N., Bandis, S., Bakhtar, K.: Strength, deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. 22(3), 121–140 (1985)

    Google Scholar 

  6. Berkowitz, B., Naumann, C., Smith, L.: Mass transfer at fracture intersections: an evaluation of mixing models. Water Resour. Res. 30(6), 1765–1773 (1994)

    Google Scholar 

  7. Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method. Comput. Struct. 81 (8-11), 491–501 (2003)

    Google Scholar 

  8. Brown, S.R.: Fluid-flow through rock joints - the effect of surface-roughness. J. Geophys. Res.-Solid Earth Planet. 92(B2), 1337–1347 (1987)

    Google Scholar 

  9. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Scarano, V., Chiara, R.D., Erra, U. (eds.) Eurographics Italian Chapter Conference. The Eurographics Association (2008)

  10. Computational Simulation Software LLC (csimsoft). Trelis meshing pre-processor. https://www.csimsoft.com/trelis, 2019. Online; accessed 01-April-2019

  11. de la Iglesia, D.: 3d point cloud generation from 3d triangular mesh (2019)

  12. Dickopf, T.: Multilevel Methods Based on Non-nested Meshes. PhD Thesis, University of Bonn (2010)

  13. Dickopf, T., Krause, R.: Efficient simulation of multi-body contact problems on complex geometries: a flexible decomposition approach using constrained minimization. Int. J. Numer. Methods Eng. 77(13), 1834–1862 (2009)

    Google Scholar 

  14. Donea, J., Huerta, A., Ponthot, J., Rodriguez-Ferran, A.: Arbitrary Lagrangian Eulerian methods Chapter 14, vol. 1. Fundamentals in Encyclopedia of Computational Mechanics. Wiley, New York (2004)

    Google Scholar 

  15. De Dreuzy, J.-R., Méheust, Y., Pichot, G.: Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN). J. Geophys. Res. Solid Earth 117(B11), 1–21 (2012)

    Google Scholar 

  16. Ebigbo, A., Lang, P.S., Paluszny, A., Zimmerman, R.W.: Inclusion-based effective medium models for the permeability of a 3d fractured rock mass. Transp. Porous Media 113(1), 137–158 (2016)

    Google Scholar 

  17. Fu, P., Hao, Y., Walsh, S.D., Carrigan, C.R.: Thermal drawdown-induced flow channeling in fractured geothermal reservoirs. Rock Mech. Rock. Eng. 49(3), 1001–1024 (2016)

    Google Scholar 

  18. Gaston, D., Newman, C., Hansen, G., Lebrun-grandié, D.: Moose A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768–1778 (2009)

    Google Scholar 

  19. Glover, P.W.J., Matsuki, K., Hikima, R., Hayashi, K.: Synthetic rough fractures in rocks. J. Geophys. Res. Solid Earth 103(B5), 9609–9620 (1998)

    Google Scholar 

  20. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D.: A distributed lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25(5), 755–794 (1999)

    Google Scholar 

  21. Hesch, C., Gil, A., Carreño, A.A., Bonet, J., Betsch, P.: A mortar approach for fluid–structure interaction problems Immersed strategies for deformable and rigid bodies. Comput. Methods Appl. Mech. Eng. 278, 853–882 (2014)

    Google Scholar 

  22. Hobé, A., Vogler, D., Seybold, M.P., Ebigbo, A., Settgast, R.R., Saar, M.O.: Estimating fluid flow rates through fracture networks using combinatorial optimization. Adv. Water Resour. 122, 85–97 (2018)

    Google Scholar 

  23. Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction — a review. Commun. Comput. Phys. 12(2), 337–377 (2012)

    Google Scholar 

  24. Hull, L.C., Koslow, K.N.: Streamline routing through fracture junctions. Water Resour. Res. 22(12), 1731–1734 (1986)

    Google Scholar 

  25. Hyman, M.A.: Non-iterative numerical solution of boundary-value problems. Appl. Sci. Res. Sect. B 2(1), 325–351 (1952)

    Google Scholar 

  26. Jiang, Y., Li, B., Tanabashi, Y.: Estimating the relation between surface roughness and mechanical properties of rock joints. Int. J. Rock Mech. Min. Sci. 43(6), 837–846 (2006)

    Google Scholar 

  27. Johnson, J., Brown, S.: Experimental mixing variability in intersecting natural fractures. Geophys. Res. Lett. 28(22), 4303–4306 (2001)

    Google Scholar 

  28. Johnson, J., Brown, S., Stockman, H.: Fluid flow and mixing in rough-walled fracture intersections. J. Geophys. Res.: Solid Earth 111(B12), 1–16 (2006)

    Google Scholar 

  29. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: Libmesh: a C++ library for parallel adaptive mesh refinement/ coarsening simulations. Eng. Comput. 22, 237–254 (2006)

    Google Scholar 

  30. Kling, T., Vogler, D., Pastewka, L., Amann, F., Blum, P.: Numerical simulations and validation of contact mechanics in a granodiorite fracture. Rock Mech. Rock. Eng. 51(9), 2805–2824 (2018)

    Google Scholar 

  31. Kosakowski, G., Berkowitz, B.: Flow pattern variability in natural fracture intersections. Geophys. Res. Lett. 26(12), 1765–1768 (1999)

    Google Scholar 

  32. Krause, R., Walloth, M.: Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl. Numer. Math. 62(10), 1393–1410 (2012)

    Google Scholar 

  33. Krause, R., Zulian, P.: A parallel approach to the variational transfer of discrete fields between arbitrarily distributed unstructured finite element meshes. SIAM J. Sci. Comput. 38(3), C307–C333 (2016)

    Google Scholar 

  34. Manoorkar, S., Sedes, O., Morris, J.F.: Particle transport in laboratory models of bifurcating fractures. J. Nat. Gas Sci. Eng. 33, 1169–1180 (2016)

    Google Scholar 

  35. Matsuki, K., Wang, E., Giwelli, A., Sakaguchi, K.: Estimation of closure of a fracture under normal stress based on aperture data. Int. J. Rock Mech. Min. Sci. 45(2), 194–209 (2008)

    Google Scholar 

  36. McClure, M.W., Horne, R.N.: Correlations between formation properties and induced seismicity during high pressure injection into granitic rock. Eng. Geol. 175, 74–80 (2014)

    Google Scholar 

  37. McClure, M.W., Horne, R.N.: An investigation of stimulation mechanisms in enhanced geothermal systems. Int. J. Rock Mech. Min. Sci. 72, 242–260 (2014)

    Google Scholar 

  38. Michalis, V.K., Kalarakis, A.N., Skouras, E.D., Burganos, V.N.: Mixing within fracture intersections during colloidal suspension flow. Water Resour. Res. 45(8), 1–10 (2009)

    Google Scholar 

  39. Mourzenko, V.V., Yousefian, F., Kolbah, B., Thovert, J.-F., Adler, P.M.: Solute transport at fracture intersections. Water Resour. Res. 38(1), 1–14 (2002)

    Google Scholar 

  40. Nemoto, K., Watanabe, N., Hirano, N., Tsuchiya, N.: Direct measurement of contact area and stress dependence of anisotropic flow through rock fracture with heterogeneous aperture distribution. Earth Planet. Sci. Lett. 281(1-2), 81–87 (2009)

    Google Scholar 

  41. Nestola, M.G.C., Becsek, B., Zolfaghari, H., Zulian, P., De Marinis, D., Krause, R., Obrist, D.: An immersed boundary method for fluid-structure interaction based on variational transfer. J. Comput. Phys. 398, 108884 (2019)

    Google Scholar 

  42. Nestola, M.G.C., Faggiano, E., Vergara, C., Lancellotti, R.M., Ippolito, S., Antona, C., Filippi, S., Quarteroni, A., Scrofani, R.: Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput. Methods Biomech. Biomed. Eng. 20(2), 171–181 (2017)

    Google Scholar 

  43. Nestola, M.G.C., Gizzi, A., Cherubini, C., Filippi, S.: Three-band decomposition analysis in multiscale FSI models of abdominal aortic aneurysms. Int. J. Mod. Phys. C 27(02), 1650017 (2016)

    Google Scholar 

  44. Nestola, M.G.C., Zulian, P., Krause, R.: An contact fluid-structure interaction formulation based on the fictitious domain method. In: Preparation (2019)

  45. Park, Y.-J., Lee, K.-K., Berkowitz, B.: Effects of junction transfer characteristics on transport in fracture networks. Water Resour. Res. 37(4), 909–923 (2001)

    Google Scholar 

  46. Park, Y.-J., Lee, K.-K., Kosakowski, G., Berkowitz, B.: Transport behavior in three-dimensional fracture intersections. Water Resour. Res. 39(8), 1–9 (2003)

    Google Scholar 

  47. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Google Scholar 

  48. Peterson, J.W., Lindsay, A.D., Kong, F.: Overview of the incompressible Navier–Stokes simulation capabilities in the moose framework. Adv. Eng. Softw. 119, 68–92 (2018)

    Google Scholar 

  49. Planta, C., Vogler, D., Nestola, M., Zulian, P., Krause, R.: Variational parallel information transfer between unstructured grids in geophysics-applications and solutions methods. Proceedings, 43rd Workshop on Geothermal Reservoir Engineering, Stanford, pp. 1–13 (2018)

  50. Pyrak-Nolte, L.J., Morris, J.P.: Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int. J. Rock Mech. Min. Sci. 37(1-2), 245–262 (2000)

    Google Scholar 

  51. Rasmuson, A., Neretnieks, I.: Radionuclide transport in fast channels in crystalline rock. Water Resour. Res. 22(8), 1247–1256 (1986)

    Google Scholar 

  52. Richter, T.: Fluid-Structure Interactions: Models, Analysis and Finite Elements, vol. 118. Springer, Berlin (2017)

  53. Rutqvist, J., Stephansson, O.: The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 11(1), 7–40 (2003)

    Google Scholar 

  54. Saul’ev, V.K.: On the solution of some boundary value problems on high performance computers by fictitious domain method. Siberian Math. J 4(4), 912–925 (1963)

    Google Scholar 

  55. Schädle, P., Zulian, P., Vogler, D., Nestola, M.G.C., Ebigbo, A., Krause, R., Saar, M.O.: 3D non-conforming mesh model for flow in fractured porous media using Lagrange multipliers. Comput. Geosci. 132, 42–55 (2019)

    Google Scholar 

  56. Stockman, H.W., Li, C., Wilson, J.L.: A lattice-gas and lattice Boltzmann study of mixing at continuous fracture junctions: Importance of boundary conditions. Geophys. Res. Lett. 24(12), 1515–1518 (1997)

    Google Scholar 

  57. Tatone, B.S.A., Grasselli, G.: Characterization of the effect of normal load on the discontinuity morphology in direct shear specimens using x-ray micro-CT. Acta Geotech. 10(1), 31–54 (2015)

    Google Scholar 

  58. Tester, J.W., Anderson, B., Batchelor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., et al.: The future of geothermal energy: impact of enhanced geothermal systems EGS on the United States in the 21st century. Massachusetts Institute of Technology, pp. 209 (2006)

  59. Tsang, Y.W.: The effect of tortuosity on fluid-flow through a single fracture. Water Resour. Res. 20(9), 1209–1215 (1984)

    Google Scholar 

  60. Tsang, Y.W., Tsang, C.: Channel model of flow through fractured media. Water Resour. Res. 23(3), 467–479 (1987)

    Google Scholar 

  61. Vogler, D.: Hydro-Mechanically Coupled Processes in Heterogeneous Fractures: Experiments and Numerical Simulations. PhD thesis, ETH Zurich (2016)

  62. Vogler, D., Amann, F., Bayer, P., Elsworth, D.: Permeability evolution in natural fractures subject to cyclic loading and gouge formation. Rock Mech. Rock. Eng. 49(9), 3463–3479 (2016)

    Google Scholar 

  63. Vogler, D., Settgast, R.R., Annavarapu, C., Bayer, P., Amann, F.: Hydro-mechanically coupled flow through heterogeneous fractures. PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering. SGP-TR-209, Stanford (2016b)

  64. Vogler, D., Settgast, R.R., Annavarapu, C., Madonna, C., Bayer, P., Amann, F.: Experiments and simulations of fully hydro-mechanically coupled response of rough fractures exposed to high pressure fluid injection. J. Geophys. Res Solid Earth 123, 1186–1200 (2018)

    Google Scholar 

  65. Vogler, D., Walsh, S.D.C., Bayer, P., Amann, F.: Comparison of surface properties in natural and artificially generated fractures in a crystalline rock. Rock Mech. Rock. Eng. 50(11), 2891–2909 (2017)

    Google Scholar 

  66. von Planta, C., Vogler, D., Chen, X., Nestola, M.G.C., Saar, M.O., Krause, R.: Simulation of hydro-mechanically coupled processes in rough rock fractures using an immersed boundary method and variational transfer operators. Comput. Geosci. 23(5), 1125–1140 (2019)

    Google Scholar 

  67. von Planta, C., Vogler, D., Zulian, P., Saar, M.O., Krause, R.: Solution of contact problems between rough body surfaces with non matching meshes using a parallel mortar method. ArXiv e-prints (2019)

  68. Watanabe, N., Hirano, N., Tsuchiya, N.: Determination of aperture structure and fluid flow in a rock fracture by high-resolution numerical modeling on the basis of a flow-through experiment under confining pressure. Water Resour. Res. 44(6), n/a–n/a (2008)

    Google Scholar 

  69. Wohlmuth, B.I.: A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2000)

    Google Scholar 

  70. Wohlmuth, B.I., Krause, R.H.: Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)

    Google Scholar 

  71. Yu, Z.: A dlm/fd method for fluid/flexible-body interactions. J. Comput. Phys. 207(1), 1–27 (2005)

    Google Scholar 

  72. Zangerl, C., Evans, K.F., Eberhardt, E., Loew, S.: Normal stiffness of fractures in granitic rock: a compilation of laboratory and in-situ experiments. Int. J. Rock Mech. Min. Sci. 45(8), 1500–1507 (2008)

    Google Scholar 

  73. Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23(1), 1–30 (1996)

    Google Scholar 

  74. Zimmerman, R.W., Kumar, S., Bodvarsson, G.S.: Lubrication theory analysis of the permeability of rough-walled fractures. Int. J. Rock Mech. Min. Sci. Geomech. Abstract. 28(4), 325–331 (1991)

    Google Scholar 

  75. Zou, L., Jing, L., Cvetkovic, V.: Modeling of flow and mixing in 3d rough-walled rock fracture intersections. Adv. Water Resour. 107, 1–9 (2017)

    Google Scholar 

  76. Zulian, P., Kopaničáková, A., Nestola, M.C.G., Fink, A., Fadel, N., Magri, V., Schneider, T., Botter, E., Mankau, J.: Utopia: A C++ embedded domain specific language for scientific computing. Git repository. https://bitbucket.org/zulianp/utopia (2016)

Download references

Acknowledgements

The Werner Siemens-Stiftung (Foundation) is thanked for its support of the Geothermal Energy and Geofluids Group in the Department of Earth Sciences at ETH Zurich, Switzerland.

Funding

This study received funding from the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE), by Innosuisse - Swiss Innovation Agency under Grant Number 28305.1 and the Swiss Federal Office of Energy (SFOE) under Grant Number SI/500676-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill von Planta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Planta, C., Vogler, D., Chen, X. et al. Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with variational transfer operators. Comput Geosci 24, 1799–1814 (2020). https://doi.org/10.1007/s10596-020-09936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09936-7

Keywords

Navigation