Skip to main content
Log in

A finite difference method for earthquake sequences in poroelastic solids

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Induced seismicity (earthquakes caused by injection or extraction of fluids in Earth’s subsurface) is a major, new hazard in the USA, the Netherlands, and other countries, with vast economic consequences if not properly managed. Addressing this problem requires development of predictive simulations of how fluid-saturated solids containing frictional faults respond to fluid injection/extraction. Here, we present a finite difference method for 2D linear poroelasticity with rate-and-state friction faults, accounting for spatially variable properties. Semi-discrete stability and accuracy are proven using the summation-by-parts, simultaneous-approximation-term (SBP-SAT) framework for discretization and boundary condition enforcement. Convergence rates are verified using the method of manufactured solutions and comparison to the analytical solution to Mandel’s problem. The method is then applied to study fault slip triggered by fluid injection and diffusion through high-permeability fault damage zones. We demonstrate that in response to the same, gradual forcing, fault slip can occur in either an unstable manner, as short-duration earthquakes that radiate seismic waves, or as stable, aseismic, slow slip that accumulates over much longer time scales. Finally, we use these simulation results to discuss the role of frictional and elastic properties in determining the stability and nature of slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aagaard, B.T., Knepley, M.G., Williams, C.A.: A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J. Geophys. Res. 118(6), 3059–3079 (2013)

    Article  Google Scholar 

  2. Abousleiman, Y., Cheng, A.D., Cui, L., Detournay, E., Roegiers, J.C.: Mandel’s problem revisited. Geotechnique 46(2), 187–195 (1996)

    Article  Google Scholar 

  3. Atkinson, G.M., Eaton, D.W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R.M., Liu, Y., van der Baan, M., Kao, H.: Hydraulic fracturing and seismicity in the Western Canada sedimentary basin. Seismol. Res. Lett. 87(3), 631–647 (2016)

    Article  Google Scholar 

  4. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  5. Cheng, A.H.D., Detournay, E.: A direct boundary element method for plane strain poroelasticity. Int. J. Numer. Anal. Met. 12, 551–572 (1988)

    Article  Google Scholar 

  6. Dean, R.H., Gai, X., Stone, C.M., Minkoff, S.E.: A comparison of techniques for coupling porous flow and geomechanics. SPE J. 11(01), 132–140 (2006)

    Article  Google Scholar 

  7. Deichmann, N., Giardini, D.: Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol. Res. Lett. 80(5), 784–798 (2009)

    Article  Google Scholar 

  8. Deng, K., Liu, Y., Harrington, R.M.: Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophys. Res. Lett. 43(16), 8482–8491 (2016)

    Article  Google Scholar 

  9. Detournay, E., Cheng, A.H.D.: Fundamental of poroelasticity, Ch 5 in Comprehensive Rock Engineering. In: Fairhurst, C. (ed.) vol. 2 (1993)

  10. Dieterich, J.H., Richards-Dinger, K.B., Kroll, K.A.: Modeling injection-induced seismicity with the physics-based earthquake simulator RSQSim. Seismol. Res. Lett. 86(4), 1102–1109 (2015)

    Article  Google Scholar 

  11. Dunham, E.M., Rice, J.R.: Earthquake slip between dissimilar poroelastic materials. J. Geophys. Res 113(B9) (2008)

  12. Ellsworth, W.L.: Injection-induced earthquakes. Science 341(6142), 1225,942 (2013)

    Article  Google Scholar 

  13. Erickson, B.A., Dunham, E.M.: An efficient numerical method for earthquake cycles in heterogeneous media: alternating subbasin and surface-rupturing events on faults crossing a sedimentary basin. J. Geophys. Res. 119(4), 3290–3316 (2014)

    Article  Google Scholar 

  14. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer (1993)

  15. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer (1996)

  16. Hetland, E., Simons, M., Dunham, E.: Post-seismic and interseismic fault creep I: model description. Geophys. J. Int. 181(1), 81–98 (2010)

    Article  Google Scholar 

  17. Jha, B., Juanes, R.: Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering. Water Resour. Res. 50(5), 3776–3808 (2014)

    Article  Google Scholar 

  18. Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A., Ge, S.: Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 345(6195), 448–451 (2014)

    Article  Google Scholar 

  19. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Method. Appl. M. 200(13), 1591–1606 (2011)

    Article  Google Scholar 

  20. Kozdon, J.E., Dunham, E.M., Nordström, J.: Interaction of waves with frictional interfaces using summation-by-parts difference operators: weak enforcement of nonlinear boundary conditions. J. Sci. Comput. 50 (2), 341–367 (2012)

    Article  Google Scholar 

  21. Lapusta, N., Rice, J.R., Ben-Zion, Y., Zheng, G.: Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate-and state-dependent friction. J. Geophys. Res. 105(B10), 23,765–23,789 (2000)

    Article  Google Scholar 

  22. Marone, C.: Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Pl. Sc. 26(1), 643–696 (1998)

    Article  Google Scholar 

  23. Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients. J. Sci. Comput. 51(3), 650–682 (2012)

    Article  Google Scholar 

  24. Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equation on second-order form. J. Sci. Comput. 41(3), 366–383 (2009)

    Article  Google Scholar 

  25. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004)

    Article  Google Scholar 

  26. Mattsson, K., Svärd, M., Shoeybi, M.: Stable and accurate schemes for the compressible Navier–Stokes equations. J. Comput. Phys. 227(4), 2293–2316 (2008)

    Article  Google Scholar 

  27. McClure, M.W., Horne, R.N.: Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model. Geophysics 76(6), WC181–WC198 (2011)

    Article  Google Scholar 

  28. Meng, C.: Benchmarking Defmod, an open source FEM code for modeling episodic fault rupture. Comput. Geosci. 100, 10–26 (2017)

    Article  Google Scholar 

  29. Miah, M., Martín, L.B., Foxall, W., Rutqvist, J., Rinaldi, A.P., Mullen, C.: Development of a hydro-geomechanical model to simulate coupled fluid flow and reservoir geomechanics. In: Proceedings of the TOUGH Symposium (2015)

  30. Mikelic, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–461 (2013)

    Article  Google Scholar 

  31. Minkoff, S.E., Stone, C.M., Bryant, S., Peszynska, M., Wheeler, M.F.: Coupled fluid flow and geomechanical deformation modeling. J. Petrol. Sci. Eng. 38(1), 37–56 (2003)

    Article  Google Scholar 

  32. Preisig, M., Prévost, J. H.: Stabilization procedures in coupled poromechanics problems: a critical assessment. Int. J. Numer. Anal. Met. 35(11), 1207–1225 (2011)

    Article  Google Scholar 

  33. Rice, J.R.: Spatio-temporal complexity of slip on a fault. J. Geophys. Res. 98(B6), 9885–9907 (1993)

    Article  Google Scholar 

  34. Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14(2), 227–241 (1976)

    Article  Google Scholar 

  35. Rice, J.R., Lapusta, N., Ranjith, K.: Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49(9), 1865–1898 (2001)

    Article  Google Scholar 

  36. Rice, J.R., Ruina, A.L.: Stability of steady frictional slipping. J. Appl. Mech. 50(2), 343–349 (1983)

    Article  Google Scholar 

  37. Roache, P.J.: Verification and validation in computational science and engineering. Hermosa (1998)

  38. Rudnicki, J.W., Rice, J.R.: Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials. J. Geophys. Res. 111(B10) (2006)

  39. Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88(B12), 10,359–10,370 (1983)

    Article  Google Scholar 

  40. Segall, P.: Earthquakes triggered by fluid extraction. Geology 17(10), 942 (1989)

    Article  Google Scholar 

  41. Segall, P., Lu, S.: Injection-induced seismicity: poroelastic and earthquake nucleation effects. J. Geophys. Res. 120(7), 5082–5103 (2015)

    Article  Google Scholar 

  42. Selvadurai, A.P.: Mechanics of poroelastic media. Springer Science & Business Media (2013)

  43. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110(1), 47–67 (1994)

    Article  Google Scholar 

  44. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial–boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  Google Scholar 

  45. Torberntsson, K., Stiernström, V.: A high order finite difference method for simulating earthquake sequences in a poroelastic medium. Tech. rep., Uppsala University (2016)

  46. van Thienen-Visser, K., Breunese, J.: Induced seismicity of the Groningen gas field: history and recent developments. Lead. Edge 34(6), 664–671 (2015)

    Article  Google Scholar 

  47. Verruijt, A.: Theory and problems of poroelasticity. Delft University of Technology (2013)

  48. Viesca, R.: Elastic stress transfer as a diffusive process due to aseismic fault slip in response to fluid injection. Abstract MR41E-02 presented at 2015 Fall Meeting, AGU, San Francisco, Calif. 14–18 Dec (2015)

  49. Wang, H.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press (2000)

  50. White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Method. Appl. M. 197(49), 4353–4366 (2008)

    Article  Google Scholar 

  51. White, J.A., Borja, R.I.: Block-preconditioned Newton–Krylov solvers for fully coupled flow and geomechanics. Comput. Geosci. 15(4), 647–659 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Discussions with Ossian O’Reilly on numerical methods and assistance from Kali Allison on the PETSc implementation are gratefully acknowledged.

Funding

This work was supported by the Stanford Consortium for Induced and Triggered Seismicity and by a scholarship to K.T. and V.S. from the Anna Whitlocks minnesfond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Dunham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torberntsson, K., Stiernström, V., Mattsson, K. et al. A finite difference method for earthquake sequences in poroelastic solids. Comput Geosci 22, 1351–1370 (2018). https://doi.org/10.1007/s10596-018-9757-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9757-1

Keywords

Navigation