Skip to main content
Log in

Compositional flow modeling using a multi-point flux mixed finite element method

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a general compositional formulation using multi-point flux mixed finite element (MFMFE) method on general hexahedral grids. The mixed finite element framework allows for local mass conservation, accurate flux approximation, and a more general treatment of boundary conditions. The multi-point flux inherent in MFMFE scheme allows the usage of a full permeability tensor. The proposed formulation is an extension of single and two-phase flow formulations presented by Wheeler and Yotov, SIAM J. Numer. Anal. 44(5), 2082–2106 (35) with similar convergence properties. Furthermore, the formulation allows for black oil, single-phase and multi-phase incompressible, slightly and fully compressible flow models utilizing the same design for different fluid systems. An accurate treatment of diffusive/dispersive fluxes owing to additional velocity degrees of freedom is also presented. The applications areas of interest include gas flooding, CO 2 sequestration, contaminant removal, and groundwater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acs, G., Doleschall, S., Farkas, E.: General purpose compositional model. Old SPE J. 25(4), 543–553 (1985)

    Google Scholar 

  2. Baker, L.E., Pierce, A.C., Luks, K.D.: Gibbs energy analysis of phase equilibria. SPE J. 22(5), 731–742 (1982)

    Article  Google Scholar 

  3. Brezzi, F., Douglas, J., Duràn, R.Jr., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51(2), 237–250 (1987)

    Article  Google Scholar 

  4. Chang, Y.-B.: Development and application of an equation of state compositional simulator (1990)

  5. Chen, C., Wang, Y., Li, G.: Closed-loop reservoir management on the brugge test case. Comput. Geosci. 14, 691–703 (2010)

    Article  Google Scholar 

  6. Coats, K.: An equation of state compositional model. Old SPE J. 20(5), 363–376 (1980)

    Google Scholar 

  7. Farkas, E.: Linearization techniques of reservoir-simulation equations: fully implicit cases. SPE J. 3(4) (1998)

  8. Firoozabadi, A., Pan, H.: Fast and robust algorithm for compositional modeling: part i-stability analysis testing. SPE J. 7(1), 79–89 (2002)

    Article  Google Scholar 

  9. Fussell, L.T., Fussell, D.D.: An iterative technique for compositional reservoir models. SPE J. 19(4) (1979)

  10. Fussell, L.T.: Technique for calculating multiphase equilibria. SPE J. 19(4), 203–210 (1979)

    Article  Google Scholar 

  11. Hajibeygi, H., Tchelepi, H.A.: Compositional multiscale finite-volume formulation. SPE J. 19(2) (2014)

  12. Heidemann, R.A., Michelsen, M.L.: Instability of successive substitution. Ind. Eng. Chem. Res. 34(3), 958–966 (1995)

  13. Ingram, R., Wheeler, M.F., Yotov, I.: A Multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48(4), 1281–1312 (2010)

    Article  Google Scholar 

  14. Kazemi, H., Vestal, C.R., Shank, D.G.: An efficient multicomponent numerical simulator. SPE J. 18(5) (1978)

  15. Lauser, A., Hager, C., Helmig, R., Wohlmuth, B.: A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Resour. 34(8), 957–966 (2011)

  16. Martinez, M.J., Stone, C.M.: Considerations for developing models of multiphase flow in deformable porous media. SANDIA REPORT, SAND2008-5887 (2008)

  17. Mehra, R.K., Heidemann, R.A., Aziz, K.: Computation of multiphase equilibrium for compositional simulation. SPE J. 22(1), 61–62 (1982)

  18. Michelsen, M.L.: The isothermal flash problem. part i. stability. Fluid Phase Equilib. 9(1), 1–19 (1982a)

    Article  Google Scholar 

  19. Michelsen, M.L.: The isothermal flash problem. part ii. phase-split calculation. Fluid Phase Equilib. 9(1), 21–40 (1982b)

    Article  Google Scholar 

  20. Michelsen, M.L.: Calculation of multiphase equilibrium. Comput. Chem. Eng. 18(7), 545–550 (1994)

    Article  Google Scholar 

  21. Nghiem, L.X., Fong, D.K., Aziz, K.: Compositional modeling with an equation of state. SPE J. 21(6) (1981)

  22. Okuno, R., Johns, R.T., Sepehrnoori, K.: A new algorithm for rachford-rice for multiphase compositional simulation. SPE J. 15(2), 313–325 (June 2010)

    Article  Google Scholar 

  23. Pan, H., Firoozabadi, A.: Fast and robust algorithm for compositional modeling: part ii-two-phase flash computations. SPE J. 8(4), 380–391 (2003)

  24. Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Indust. Eng. Chem. Fund. 15(1), 59–64 (1976)

    Article  Google Scholar 

  25. Peters, E., Arts, R., Brouwer, G., Geel, C.: Results of the Brugge benchmark study for flooding optimisation and history matching. SPE 119094-MS. SPE Reservoir Simulation Symposium (2009)

  26. Rachford, H.H., Rice, J.D.: Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium. Trans. Am. Instit. Min. Metall. Eng. 195, 327–328 (1952)

    Google Scholar 

  27. Roebuck, I.F. Jr., Henderson, G.E., Douglas, J. Jr., Ford, W.T.: The compositional reservoir simulator: case I-the linear model. Old SPE J. 9(01), 115–130 (1969)

    Google Scholar 

  28. Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. Math. Reserv. Simul. 1, 35–106 (1983)

    Article  Google Scholar 

  29. Singh, G., Pencheva, G., Kumar, K., Wick, T., Ganis, B., Wheeler, M.F.: Impact of Accurate Fractured Reservoir Flow Modeling on Recovery Predictions. SPE Hydraulic Fracturing Technology Conference (2014)

  30. Sun, S., Firoozabadi, A.: Compositional Modeling in Three-Phase Flow for CO2 and other Fluid Injections using Higher-Order Finite Element Methods. SPE Annual Technical Conference and Exhibition (2009)

  31. Thomas, S.G.: On some problems in the simulation of flow and transport through porous media. PhD. Thesis (2009)

  32. Watts, J.W.: A compositional formulation of the pressure and saturation equations. SPE Reserv. Eng. 1(3), 243–252 (1986)

    Article  Google Scholar 

  33. Wheeler, M.F., Xue, G.: Accurate locally conservative discretizations for modeling multiphase flow in porous media on general hexahedra grids. Proceedings of the 12th European Conference on the Mathematics of Oil Recovery-ECMOR XII, publisher EAGE (2011)

  34. Wheeler, M., Xue, G., Yotov, I.: A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121(1), 165–204 (2011a)

    Article  Google Scholar 

  35. Wheeler, M.F., Yotov, I.: A Multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44(5), 2082–2106 (2006)

    Article  Google Scholar 

  36. Wheeler, M.F., Xue, G., Yotov, I.: A family of multipoint flux mixed finite element methods for elliptic problems on general grids. Proc. Comput. Sci. 4, 918–927 (2011b)

    Article  Google Scholar 

  37. Wilson, G.: A modified redlich-kwong equation of state applicable to general physical data calculations. Paper No15C, 65th AIChE National meeting (1968)

  38. Wong, T.W., Firoozabadi, A., Aziz, K.: Relationship of the volume-balance method of compositional simulation to the Newton-Raphson method. SPE Reserv. Eng. J. 5(3) (1990)

  39. Young, L., Stephenson, R: A generalized compositional approach for reservoir simulation. Old SPE J. 23 (5), 727–742 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Wheeler, M.F. Compositional flow modeling using a multi-point flux mixed finite element method. Comput Geosci 20, 421–435 (2016). https://doi.org/10.1007/s10596-015-9535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9535-2

Keywords

Navigation