Skip to main content
Log in

Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical–analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change (IPCC): Climate change 2007: the physical science basis. Fourth assessment report, IPCC Secretariat, Geneva, Switzerland (2007)

  2. Socolow, R.H.: Can we bury global warming? Sci. Am. 293(1), 49–55 (2005)

    Article  Google Scholar 

  3. Pacala, S., Socolow, R.: Stabilization wedges: solving the climate problem for the next 50 years with current technology. Sci. 305, 968–972 (2004). doi:10.1126/science.1100103

    Article  Google Scholar 

  4. Bachu, S.: CO2 storage in geological media: role, means, status and barriers to deployment. Prog. Energy Combust. Sci. 3(2), 254–273 (2008). doi:10.1016/j.pecs.2007.10.001

    Article  Google Scholar 

  5. Bachu, S.: Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Convers. Manag. 43(1), 87–102 (2003). doi:10.1016/S0196-8904(01)00009-7

    Article  Google Scholar 

  6. Nordbotten, J.M., Celia, M.A., Bachu, S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40(4), W04204 (2004). doi:10.1029/2003WR002997

    Article  Google Scholar 

  7. Celia, M.A., Bachu, S., Nordbotten, J.M., Kavetski, D., Gasda, S.E.: A risk assessment tool to quantify CO2 leakage through wells in mature sedimentary basins. 8th International Greenhouse Gas Control Technologies (2006)

  8. Bachu, S., Celia, M.A.: Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. In: McPherson, B.J.O.L., Sundquis, E. (eds.) The Science of CO2 Storage, AGU monograph, in press. American Geophysical Union, Washington, DC (2009)

    Google Scholar 

  9. Koide, H.G., Tazaki, Y., Noguchi, Y., Nakayama, S., Iijima, M., Ito, K., Shindo, Y.: Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Convers. Manag. 33(5–8), 619–626 (1992). doi:10.1016/0196-8904(92)90064-4

    Article  Google Scholar 

  10. Holloway, S.: Storage of fossil fuels-derived carbon dioxide beneath the surface of the earth. Annu. Rev. Energy Environ. 26, 145–166 (2001). doi:10.1146/annurev.energy.26.1.145

    Article  Google Scholar 

  11. Bruant, R.G., Guswa, A.J., Celia, M.A., Peters, C.A.: Safe storage of CO2 in deep saline aquifers. Environ. Sci. Technol. 36(17), 240A–245A (2002). doi:10.1021/es0223325

    Article  Google Scholar 

  12. Intergovernmental Panel on Climate Change (IPCC): Special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  13. Energy Information Administration (EIA): Annual Energy Review 2005, DOE/EIA-0384 (2005)

  14. Gasda, S.E., Bachu, S., Celia, M.A.: Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46, 707–720 (2004). doi:10.1007/s00254-004-1073-5

    Article  Google Scholar 

  15. Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Determining effective wellbore permeability from a field pressure test: a numerical analysis of detection limits. Environ. Geol. 54(6), 1207–1215 (2007). doi:10.1007/s00254-007-0903-7

    Article  Google Scholar 

  16. White, M.D., Oostrom, M.: STOMP, Subsurface Transport Over Multiple Phases. Pacific Northwest National Laboratory, Report PNNL-11218, Richland, WA (1997)

  17. Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s Guide, Version 2.0, Lawrence Berkeley National Laboratory Report LBNL-43134. Berkeley, CA (1999)

  18. Pruess, K., García, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29(9–10), 1431–1444 (2004). doi:10.1016/j.energy.2004.03.077

    Article  Google Scholar 

  19. Schlumberger: Eclipse Technical Description 2007.1 (2007)

  20. Nordbotten, J.M., Celia, M.A., Bachu, S.: Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media 58(3), 339–360 (2005). doi:10.1007/s11242-004-0670-9

    Article  Google Scholar 

  21. Nordbotten, J.M., Celia, M.A., Bachu, S.: Semianalytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602–611 (2005). doi:10.1021/es035338i

    Article  Google Scholar 

  22. Nordbotten, J.M., Kavetski, D., Celia, M.A., Bachu, S.: A semi-analytical model estimating leakage associated with CO2 storage in large-scale multi-layered geological systems with multiple leaky wells. Environ. Sci. Technol. 43(3), 743–749 (2009)

    Article  Google Scholar 

  23. Hesse, M.A., Orr, F.M., Jr., Tchelepi, H.A.: Gravity currents with residual trapping. J. Fluid Mech. 611, 35–60 (2008). doi:10.1017/S002211200800219X

    Article  MATH  MathSciNet  Google Scholar 

  24. Nordbotten, J.M., Celia, M.A.: An improved analytical solution for interface upconing around a well. Water Resour. Res. 46(8), W08433 (2006). doi:10.1029/2005WR004738

    Article  Google Scholar 

  25. Nordbotten, J.M., Celia, M.A.: Similarity solutions for fluids injected into confined aquifers. J. Fluid Mech. 561, 307–327 (2006). doi:10.1017/S0022112006000802

    Article  MATH  MathSciNet  Google Scholar 

  26. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  27. Bear, J.: Hydraulics of Groundwater. McGraw-Hill, New York (1979)

    Google Scholar 

  28. Lake, L.: Enhanced Oil Recovery. Prentice Hall, Upper Saddle River (1989)

    Google Scholar 

  29. Coats, K.H., Dempsey, J.R., Henderson, J.H.: The use of vertical equilibrium in two-dimensional simulation of three-dimensional reservoir performance. Soc. Pet. Eng. J. 11(1), 63–71 (1971). doi:10.2118/2797-PA

    Google Scholar 

  30. Dietz, D.N.: A theoretical approach to the problem of encroaching and by-passing edge water. In: Proceedings Akademie van Wetenschappen, pp. 83–94 (1953)

  31. Juanes, R., Spiteri, E.J., Orr, F.M., Jr., Blunt, M.J.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418 (2006). doi:10.1029/2005WR004806

    Article  Google Scholar 

  32. Bachu, S., Bennion, B.: Effects of in-situ conditions on relative permeability characteristics of CO2–brine systems. Environ. Geol. 54, 1707–1722 (2008). doi:10.1007/s00254-007-0946-9

    Article  Google Scholar 

  33. Peaceman, D.W.: Interpretation of wellblock pressures in numerical reservoir simulation. Soc. Pet. Eng. J. 6, 183–194 (1978)

    Google Scholar 

  34. Muskat, M.: Physical Principles of Oil Production. McGraw-Hill, New York (1949)

    Google Scholar 

  35. Class, H., Ebigbo, A., Helmig, R., Dahle, H., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S., Krug, S., Labregere, D., Min, J., Sbai, A., Thomas, S., Trenty, L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. (2009; this issue)

  36. Eigestad, G.T., Dahle, H.K., Hellevang, B., Johansen, W.T., Riis, F., Øian, E.: Geological Modeling and Simulation of CO2 injection in the Johansen Formation. Comput. Geosci. (2009; this issue)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Gasda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasda, S.E., Nordbotten, J.M. & Celia, M.A. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput Geosci 13, 469–481 (2009). https://doi.org/10.1007/s10596-009-9138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9138-x

Keywords

Navigation