Skip to main content
Log in

Convergence of a symmetric MPFA method on quadrilateral grids

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper investigates different variants of the multipoint flux approximation (MPFA) O-method in 2D, which rely on a transformation to an orthogonal reference space. This approach yields a system of equations with a symmetric matrix of coefficients. Different methods appear, depending on where the transformed permeability is evaluated. Midpoint and corner-point evaluations are considered. Relations to mixed finite element (MFE) methods with different velocity finite element spaces are further discussed. Convergence of the MPFA methods is investigated numerically. For corner-point evaluation of the reference permeability, the same convergence behavior as the O-method in the physical space is achieved when the grids are refined uniformly or when grid perturbations of order h 2 are allowed. For h 2-perturbed grids, the convergence of the normal velocities is slower for the midpoint evaluation than for the corner-point evaluation. However, for rough grids, i.e., grids with perturbations of order h, contrary to the physical space method, convergence cannot be claimed for any of the investigated reference space methods. The relations to the MFE methods are used to explain the loss of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6, 404–432 (2002)

    Article  Google Scholar 

  2. Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: A class of discretization methods for structured and unstructured grids in anisotropic, inhomogeneous media. In: Heinemann, Z., Kriebernegg, M. (eds.) Proceedings of the 5th European Conference on the Mathematics of Oil Recovery, pp. 157–166. Leoben, Austria (1996)

  3. Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys. 127, 2–14 (1996)

    Article  MATH  Google Scholar 

  4. Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation of the methods. Part II: discussion and numerical results. SIAM J. Sci. Comput. 19, 1700–1736 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aavatsmark, I., Barkve, T., Mannseth, T.: Control-volume discretization methods for 3D quadrilateral grids in inhomogeneous, anisotropic reservoirs. SPE J. 3, 146–154 (1998)

    Google Scholar 

  6. Aavatsmark, I., Eigestad, G.T., Klausen, R.A.: Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, vol. 142 of IMA Vol. Ser., pp. 1–21. Springer, New York (2006)

    Chapter  Google Scholar 

  7. Agouzal, A., Baranger, J., Maitre, J.-F., Oudin, F.: Connection between finite volume and mixed finite element methods for a diffusion problem with nonconstant coefficients. Application to a convection diffusion problem. East-West J. Numer. Math. 3, 237–254 (1995)

    MATH  MathSciNet  Google Scholar 

  8. Arbogast, T., Dawson, C.N., Keenan, P.T., Wheeler, M.F., Yotov, I.: Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19, 404–425 (1998)

    Article  MathSciNet  Google Scholar 

  9. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34, 828–852 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Björk, Å., Dahlquist, G.: Numerical Methods. Prentice-Hall, Englewood Cliffs (1974)

    Google Scholar 

  11. Brezzi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed elements for second order elliptic problems. Numer. Math. 88, 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  12. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  13. Cai, Z., Jones, J.E., McCormick, S.F., Russell, T.F.: Control-volume mixed finite element methods. Comput. Geosci. 1, 289–315 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Edwards, M.G.: Symmetric positive definite general tensor discretization operators on unstructured and flow based grids. In: Proceedings of the 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany, E04 (2002)

  15. Edwards, M.G.: Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids. Comput. Geosci. 6, 433–452 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Edwards, M.G.: Control-volume distributed sub-cell flux schemes for unstructured and flow based grids. In: Proceedings of SPE Reservoir Simulation Symposium, Houston, TX, SPE 79710 (2003)

  17. Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2, 259–290 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eigestad, G.T., Aadland, T., Aavatsmark, I., Klausen, R.A., Nordbotten J.M.: Recent advances for MPFA methods. In: Proceedings of the 9th European Conference on the Mathematics of Oil Recovery, Cannes, France, B002 (2004)

  19. Eigestad, G.T., Klausen, R.A.: On the convergence of the multi-point flux approximation O-method; numerical experiments for discontinuous permeability. Numer. Methods Partial Differ. Equ. 21, 1079–1098 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ewing, R.E., Liu, M.L., Wang, J.: Superconvergence of mixed finite element approximations over quadrilaterals. SIAM J. Numer. Anal. 36, 772–787 (1999)

    Article  MathSciNet  Google Scholar 

  21. Hyman, J.M., Shashkov, M., Steinberg, S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132, 130–148 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Klausen, R.A.: On locally conservative numerical methods for elliptic problems; application to reservoir simulation. Dissertation, No 297, University of Oslo (2003)

  23. Klausen, R.A., Russell, T.F.: Relationships among some locally conservative discretization methods which handle discontinuous coefficients. Comput. Geosci. 8, 341–377 (2004)

    Article  MathSciNet  Google Scholar 

  24. Klausen, R.A., Winther, R.: Convergence of multipoint flux approximations on quadrilateral grids. Numer. Methods Partial Differ. Equ. 22, 1438–1454 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mishev, I.D.: Nonconforming finite volume methods. Comput. Geosci. 6, 253–268 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, New York (1977)

    Chapter  Google Scholar 

  27. Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing, R.E. (ed.) The Mathematics of Reservoir Simulation, Frontiers in Applied Mathematics, vol. 1, pp. 35–106. SIAM, Philadelphia (1983)

    Google Scholar 

  28. Strang, W.G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  29. Thomas, J.-M.: Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes, thèse de doctorat d’état, Université Pierre et Marie Curie, Paris VI (1977)

  30. Verma, S., Aziz, K.: Two- and three-dimensional flexible grids for reservoir simulation. In: Heinemann, Z., Kriebernegg, M. (eds.) Proceedings of the 5th European Conference on the Mathematics of Oil Recovery, pp. 143–156. Leoben, Austria (1996)

  31. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite-differences for elliptic problems. SIAM J. Numer. Anal. 25, 351–375 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wheeler, M.F., Yotov, I.: A cell-centered finite difference method on quadrilaterals. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, IMA Vol. Ser., vol. 142, pp. 189–207. Springer, New York (2006)

    Chapter  Google Scholar 

  33. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2082–2106 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Aavatsmark.

Additional information

Wheeler was partially supported by NSF grant DMS 0411413 and the DOE grant DE-FGO2-04ER25617. Yotov was supported in part by the DOE grant DE-FG02-04ER25618, the NSF grant DMS 0411694 and the J. Tinsley Oden Faculty Fellowship, The University of Texas at Austin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aavatsmark, I., Eigestad, G.T., Klausen, R.A. et al. Convergence of a symmetric MPFA method on quadrilateral grids. Comput Geosci 11, 333–345 (2007). https://doi.org/10.1007/s10596-007-9056-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-007-9056-8

Keywords

Navigation