Skip to main content

Advertisement

Log in

Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The small population of fisher (Pekania pennanti) in the southern Sierra Nevada is completely geographically and genetically isolated putting it at increased risk of extinction. Previous research using a clustered sampling scheme found a high amount of genetic subdivision within the southern Sierra Nevada population hypothesized to be caused by the Kings River Canyon. In this study, we use a larger and more geographically continuous set of genetic samples (n = 127) than was previously available to test this hypothesis and evaluate the genetic structure of the population. Both spatial and non-spatial population assignment models found three primary genetic clusters with moderate divergence between the clusters (F ST = 0.05–0.13) at 10 microsatellite loci. These clusters appear to be associated with areas around the Kings River and Mountain Home State Demonstration Forest. One model also detected additional fine scale subdivision north of the Kings River that may be evidence of founder effects from a recent population expansion. The amount of population subdivision detected in this study is lower than previously found and indicates that while certain landscape features may reduce gene flow, these landscape features may be less of a barrier than initially thought. In the previous work, samples were collected in clusters which can inflate estimates of population structure by increasing the likelihood of oversampling related individuals. This study demonstrates how clustered sampling from a continuously distributed population can affect the assessment of population subdivision and influence conservation implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archie JW (1985) Statistical analysis of heterozygosity data: independent sample comparisons. Evolution 39:623–637

    Article  Google Scholar 

  • Aubry KB, Raley CM (2006) Ecological characteristics of fishers (Martes pennanti) in the southern Oregon Cascade Range. USDA Forest Service Report, Pacific Northwest Research Station, Olympia

    Google Scholar 

  • Aubry KB, Wisely SM, Raley C, Buskirk SW (2004) Zoogeography, spacing patterns, and dispersal in fishers: insights gained from combining field and genetic data. In: Harrison D, Fuller AK, Proulx G (eds) Martens and fishers (Martes) in human-altered environments: an international perspective, 1st edn. Springer, New York, pp 201–220

    Google Scholar 

  • Berger J, Young JK, Berger KM (2008) Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biol 6:165. doi:10.1371/journal.pbio.0060165

    Article  Google Scholar 

  • Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16:501–516

    Article  PubMed  Google Scholar 

  • Broquet T, Johnson C, Petit E, Thompson I, Burel F, Fryxell J (2006) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Carr D, Bowman J, Kyle CJ, Tully SM, Koen EL, Robitaille JF, Wilson PJ (2007) Rapid homogenization of multiple sources: genetic structure of a recolonizing population of fishers. J Wild Manag 71:1853–1861

    Article  Google Scholar 

  • Center for Biological Diversity (2008) A petition to list the Pacific fisher (Martes pennanti) as an Endangered or Threatened species under the California Endangered Species Act. On file at the California Department of Fish and Game

  • Cooper G, Rubinsztein DC, Amos W (1998) Ascertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues. Hum Mol Genet 7:1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Copeland JP (1996) Biology of the wolverine in central Idaho. M.S. Thesis. University of Idaho

  • Dallas J, Piertney S (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1248–1251

    CAS  PubMed  Google Scholar 

  • Davis CS, Strobeck C (1998) Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Mol Ecol 7:1776–1778

    CAS  PubMed  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Duffy AJ, Landa A, O’Connell M, Stratton C, Wright JM (1998) Four polymorphic microsatellite in wolverine, Gulo gulo. Anim Genet 29:63–72

    Article  CAS  PubMed  Google Scholar 

  • Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H, Primmer CR, Sheldon BC (1995) Microsatellite evolution: directionality or bias? Nat Genet 11:360–361

    Article  CAS  PubMed  Google Scholar 

  • Epps CW, Palsboll P, Wehausen JD, Roderick GK, Mccullough DR (2006) Elevation and connectivity define genetic refugia for mountain sheep as climate warms. Mol Ecol 15:4295–4302

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Frantz A, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Gardner CL, Ballard WB, Jessup RH (1986) Long distance movement by an adult wolverine. J Mamm 67:603

    Article  Google Scholar 

  • Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1:620–630

    PubMed Central  Google Scholar 

  • Gilpin ME, Soule ME (1986) Minimum viable populations: processes of species extinction. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 18–34

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486247

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversitiesand fixation indices version 2.9.3. www.unil.ch/izea/softwares/fstat.html. Accessed 16 Sept 2010

  • Greer AL, Collins JP (2008) Habitat fragmentation as a result of biotic and abiotic factors controls pathogen transmission throughout a host population. J Anim Ecol 77:364–369

    Article  PubMed  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Hapeman P, Latch EK, Fike JA, Rhodes OE, Kilpatrick CW (2011) Landscape genetics of fishers (Martes pennanti) in the Northeast: dispersal barriers and historical influences. J Hered 102:251–259

    Article  PubMed  Google Scholar 

  • Hawley DM, Hanley D, Dhondt AA, Lovette IJ (2006) Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Mol Ecol 15:263–275

    Article  CAS  PubMed  Google Scholar 

  • Hedmark E, Flagstad Ø, Segerstroem P, Persson J, Landa A, Ellegren H (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410

    Article  CAS  Google Scholar 

  • Hedrick PW (1999) Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jordan MJ, Higley JM, Mattews SM, Rhodes OE, Schwartz MK, Barrett RH, Palsbøll PJ (2007) Development of 22 new microsatellite loci for fishers (Martes pennanti) with variability results from across their range. Mol Ecol Notes 7:797–801

    Article  CAS  Google Scholar 

  • Kalinowski S (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36

    Article  CAS  PubMed  Google Scholar 

  • Knaus BJ, Cronn R, Pilgrim K, Schwartz MK (2011) Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore. BMC Ecol 11:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koepfli K, Deere K, Slater G (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Kojola I, Kaartinen S, Hakala A, Heikkinen S, Voipo H (2009) Dispersal behavior and the connectivity between wolf populations in northern Europe. J Wildl Manag 73:309–313

    Article  Google Scholar 

  • Kyle CJ, Strobeck C (2001) Genetic structure of North American wolverine (Gulo gulo) populations. Mol Ecol 10:337–347

    Google Scholar 

  • Kyle C, Strobeck C (2003) Genetic homogeneity of Canadian mainland marten populations underscores the distinctiveness of Newfoundland pine martens (Martes americana atrata). Can J Zool 81:57–66

    Article  Google Scholar 

  • Kyle C, Davis C, Strobeck C (2000) Microsatellite analysis of North American pine marten (Martes americana) populations from the Yukon and Northwest Territories. Can J Zool 78:1150–1157

    Google Scholar 

  • Kyle CJ, Robitaille JF, Strobeck C (2001) Genetic variation and structure of fisher (Martes pennanti) populations across North America. Mol Ecol 10:2341–2347

    Google Scholar 

  • Kyle CJ, Strobeck C, Bradley RD (2002) Connectivity of peripheral and core populations of North American wolverines. J Mamm 83:1141–1150

    Article  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  Google Scholar 

  • Lecis R, Pierpaoli M, Biro Z, Szemethy L, Ragni B, Vercillo F, Randi E (2006) Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Mol Ecol 15:119–131

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Matthews SM, Higley JM, Rennie KM, Green RE, Goddard CA, Wengert GM, Gabriel MW, Fuller TK (2013) Reproduction, recruitment, and dispersal of fishers (Martes pennanti) in a managed Douglas-fir forest in California. J Mamm 94:100–108

    Article  Google Scholar 

  • McKelvey KS, Schwartz MK (2004) Genetic errors associated with population estimation using non-invasive molecular tagging: problems and new solutions. J Wildl Manag 68:439–448

    Article  Google Scholar 

  • McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic samples in a capture-mark-recapture framework. Mol Ecol Notes 5:716–718

    Article  CAS  Google Scholar 

  • Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846

    Article  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2005) Appendix 2-spatial autocorrelation in GenAlEx 6. http://biology.anu.edu.au/GenAlEx/Download.html

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Plowright RK, Foley P, Field HE, Dobson AP, Foley JE, Eby P, Daszak P (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes. Proc R Soc B 278:3703–3712

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roesch FA, Reams GA (1999) Analytical alternatives for an annual inventory system. J For 97:33–37

    Google Scholar 

  • Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW (2005) Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet 1:660–671

    Article  CAS  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Safner T, Miller MP, McRae BH, Fortin MJ, Manel S (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. Intern J Mol Sci 12:865–889

    Article  CAS  Google Scholar 

  • Sato JJ, Wolsan M, Prevosti FJ, D’Elía G, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H (2012) Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol Phylogenet Evol 63:745–757

    Article  PubMed  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Spencer W, Rustigian-Romsos H, Strittholt J, Scheller R, Zielinski W, Truex R (2011) Using occupancy and population models to assess habitat conservation opportunities for an isolated carnivore population. Biol Conserv 144:788–803

    Article  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55

    Article  Google Scholar 

  • Tucker JM, Schwartz MK, Truex RL, Pilgrim KL, Allendorf FW (2012) Historical and contemporary DNA indicate fisher decline and isolation occurred prior to the European settlement of California. PLoS ONE 7:e52803. doi:10.1371/journal.pone.0052803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vähä J, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    Article  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wahlund S (1928) Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weir RW, Corbould FB (2008) Ecology of fishers in the sub-boreal forests of north-central British Columbia, Final Report. Peace/Williston Fish and Wildlife Compensation Program Report No. 315, Prince George, British Columbia, Canada

  • Wilcove DS, Wikelski M (2008) Going, going, gone: is animal migration disappearing. PLoS Biol 6:e188. doi:10.1371/journal.pbio.0060188

    Article  PubMed Central  PubMed  Google Scholar 

  • Willson MF (2004) Loss of habitat connectivity hinders pair formation and juvenile dispersal of chucao tapaculos in Chilean rainforest. Condor 106:166–171

    Article  Google Scholar 

  • Wisely SM, Buskirk SW, Russell GA, Aubry KB, Zielinski WJ (2004) Genetic diversity and structure of the fisher (Martes pennanti) in a peninsular and peripheral metapopulation. J Mamm 85:640–648

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Yang BZ, Zhao H, Kranzler HR, Gelernter J (2005) Practical population group assignment with selected informative markers: characteristics and properties of Bayesian clustering via STRUCTURE. Genet Epidemiol 28:302–312

    Article  PubMed  Google Scholar 

  • York EC (1996) Fisher population dynamics in north-central Massachusetts. M.S. Thesis, University of Massachusetts, Amherst

  • Zielinski WJ, Mori S (2001) What is the status and change in the geographic distribution and relative abundance of fishers? Adaptive management strategy, Sierra Nevada framework, study plan. USDA Forest Service, Pacific Southwest Research Station, Arcata

    Google Scholar 

  • Zielinski WJ, Truex RL (1995) Distinguishing tracks of marten and fisher at track-plate stations. J Wildl Manag 59:571–579

    Article  Google Scholar 

  • Zielinski WJ, Kucera TE, Barrett RH (1995) Current Distribution of fishers (Martes pennanti) in California. Calif Fish Game 81:104–112

    Google Scholar 

  • Zielinski WJ, Truex RL, Schmidt GA, Schlexer FV, Schmidt KN, Barrett RH (2004) Home range characteristics of fisher in California. J Mamm 85:649–657

    Article  Google Scholar 

  • Zielinski WJ, Truex RL, Schlexer FV, Campbell LA, Carroll C (2005) Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA. J Biogeogr 32:1385–1407

    Article  Google Scholar 

  • Zielinski WJ, Schlexer FRV, Pilgrim KL, Schwartz MK (2006) The efficacy of wire and glue hair snares in identifying mesocarnivores. Wildl Soc Bull 34:1152–1161

    Article  Google Scholar 

  • Zielinski WJ, Baldwin JA, Truex RL, Tucker JM, Flebbe PA (2012) Estimating trend in occupancy for the southern Sierra fisher (Martes pennanti) population. J Fish Wild Manag. doi:10.3996/012012-JFWM-002

    Google Scholar 

Download references

Acknowledgments

We thank K. Pilgrim, C. Engkjer and P. Minton-Edison for laboratory assistance, and J. Whitfield, J. Bolis and the field crew of the Sierra Nevada Carnivore Monitoring Program. We would also like to thank M. Mitchell, M. Hebblewhite, D. Patterson, Z. Hanley and the anonymous reviewers for their comments the manuscript. This work was supported by the USDA Forest Service Region 5, the Rocky Mountain Research Station, the University of Montana, and the National Fish and Wildlife Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jody M. Tucker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, J.M., Schwartz, M.K., Truex, R.L. et al. Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada. Conserv Genet 15, 123–136 (2014). https://doi.org/10.1007/s10592-013-0525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0525-4

Keywords

Navigation