Skip to main content
Log in

History and fate of a small isolated population of Weddell seals at White Island, Antarctica

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Weddell seals (Leptonychotes weddellii Lesson) at White Island, Antarctica form a small, completely enclosed, natural population hypothesized to be of recent origin, likely founded by individuals from nearby Erebus Bay. This population constitutes an ideal model to document a founder event and ensuing genetic drift, with implications for conservation. Here we combined historical accounts, census and tagging data since the late 1960s, and genetic data (41 microsatellite loci and mitochondrial DNA sequences) from 84 individuals representing nearly all individuals present between 1990 and 2000 to investigate the history of the founding of the White Island population, document its population dynamics and evaluate possible future threats. We fully resolved parental relationships over three overlapping generations. Cytonuclear disequilibrium among the first generation suggested that it comprised the direct descendants of a founding group. We estimated that the White Island population was founded by a small group of individuals that accessed the island during a brief break in the surrounding sea ice in the mid-1950s, consistent with historical accounts. Direct and indirect methods of calculating effective population size were highly congruent and suggested a minimum founding group consisting of three females and two males. The White Island population showed altered reproductive dynamics compared to Erebus Bay, including highly skewed sex ratio, documented inbred mating events, and the oldest known reproducing Weddell seals. A comparison with the putative source population showed that the White Island population has an effective inbreeding coefficient (F e) of 0.29. Based on a pedigree analysis including the hypothesized founding group, 86% of the individuals for whom parents were known had inbreeding coefficients ranging 0.09–0.31. This high level of inbreeding was correlated with reduced pup survival. Seals at White Island therefore face the combined effects of low genetic variability, lack of immigration, and inbreeding depression. Ultimately, this study provides evidence of the effects of natural isolation on a large, long-lived vertebrate and can provide clues to the potential effects of anthropogenic-caused isolation of similar taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Leary RF (1986) Heterozygosity and fitness in natural populations of animals. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 57–76

    Google Scholar 

  • Armitage AB (1905) Two years in the Antarctic: being a narrative of the British National Antarctic Expedition. Edward Arnold Ltd., London

    Google Scholar 

  • Boveng PL (1993) Variability in crabeater seal population and the marine ecosystem near the Antarctic Peninsula. Ph.D. Dissertation, Montana State University

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J et al (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368(6470):455–457. doi:10.1038/368455a0

    Article  CAS  PubMed  Google Scholar 

  • Cameron MF, Siniff DB (2004) Age-specific survival, abundance, and immigration rates of a Weddell seal (Leptonychotes weddellii) population in McMurdo Sound, Antarctica. Can J Zool 82(4):601–615. doi:10.1139/z04-025

    Article  Google Scholar 

  • Carmichael LE, Clark W, Strobeck C (2000) Development and characterization of microsatellite loci from lynx (Lynx canadensis), and their use in other felids. Mol Ecol 9(12):2197–2198. doi:10.1046/j.1365-294X.2000.105323.x

    Article  CAS  PubMed  Google Scholar 

  • Caro TM, Laurenson MK (1994) Ecological and genetic factors in conservation—a cautionary tale. Science 263(5146):485–486. doi:10.1126/science.8290956

    Article  CAS  PubMed  Google Scholar 

  • Castellini MA, Davis RW, Davis M, Horning M (1984) Antarctic marine life under the McMurdo ice shelf at White Island—a link between nutrient influx and seal population. Polar Biol 2(4):229–231. doi:10.1007/BF00263629

    Article  Google Scholar 

  • Castellini MA, Davis RW, Kooyman GL (1991) Annual cycles of diving behavior and ecology of the Weddell seal. University of California Press, Berkeley

    Google Scholar 

  • Caughley G (1959) Observations on the seals of Ross Island during the 1958–1959 summer. Dominion Museum, Wellington

    Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63(2):215–244. doi:10.2307/5542

    Article  Google Scholar 

  • Coltman DW, Bowen WD, Wright JM (1996) PCR primers for harbour seal (phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol Ecol 5(1):161–163. doi:10.1111/j.1365-294X.1996.tb00303.x

    Article  CAS  PubMed  Google Scholar 

  • Creel S (1998) Social organization and effective population size in carnivores. In: Caro TM (ed) Behavioral ecology and conservation biology. Oxford University Press, New York, pp 246–265

    Google Scholar 

  • Davis CS, Strobeck C (1998) Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Mol Ecol 7(12):1776–1778

    CAS  PubMed  Google Scholar 

  • Davis CS, Gelatt TS, Siniff D, Strobeck A (2002) Dinucleotide microsatellite markers from the Antarctic seals and their use in other Pinnipeds. Mol Ecol Notes 2(3):203–208. doi:10.1046/j.1471-8286.2002.00187.x

    Article  CAS  Google Scholar 

  • Davis RW, Fuiman LA, Williams TM et al (2003) Classification of Weddell seal dives based on 3-dimensional movements and video-recorded observations. Mar Ecol Prog Ser 264:109–122. doi:10.3354/meps264109

    Article  Google Scholar 

  • Davis CS, Stirling I, Strobeck C, Coltman DW (2008) Population structure of ice-breeding seals. Mol Ecol 17:3078–3094. doi:10.1111/j.1365-294X.2008.03819.x

    Article  PubMed  Google Scholar 

  • Eldridge MDB, King JM, Loupis AK et al (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv Biol 13(3):531–541. doi:10.1046/j.1523-1739.1999.98115.x

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP (phylogeny inference package) Version 3.572. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327. doi:10.1038/hdy.1997.46

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: Island populations. Conserv Biol 12(3):665–675. doi:10.1046/j.1523-1739.1998.96456.x

    Article  Google Scholar 

  • Frankham R, Wilcken J (2006) Does inbreeding distort sex-ratios? Conserv Genet 7(6):879–893. doi:10.1007/s10592-006-9129-6

    Article  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, pp 135–149

    Google Scholar 

  • Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1(1):69–70. doi:10.1111/j.1469-1795.1998.tb00228.x

    Article  Google Scholar 

  • Garbe JR, Da Y (2006) Pedigraph™ Version 2.3. Department of Animal Science, University of Minnesota, Minneapolis

    Google Scholar 

  • Gelatt TS (2001) Male reproductive success, relatedness, and the mating system of Weddell seals in McMurdo Sound, Antarctica. Ph.D. Dissertation, University of Minnesota

  • Gelatt TS, Davis CS, Siniff DB, Strobeck C (2001) Molecular evidence for twinning in Weddell seals (Leptonychotes weddellii). J Mammal 82(2):491–499. doi:10.1644/1545-1542(2001)082<0491:MEFTIW>2.0.CO;2

    Article  Google Scholar 

  • Gemmell NJ, Allen PJ, Goodman SJ, Reed JZ (1997) Interspecific microsatellite markers for the study of pinniped populations. Mol Ecol 6(7):661–666. doi:10.1046/j.1365-294X.1997.00235.x

    Article  CAS  PubMed  Google Scholar 

  • Gilpin M, Soulé ME (1986) Minimum viable populations: processes of species extinctions. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 19–34

    Google Scholar 

  • Hadley GL, Rotella JJ, Garrott RA, Nichols JD (2006) Variation in probability of first reproduction of Weddell seals. J Anim Ecol 75(5):1058–1070. doi:10.1111/j.1365-2656.2006.01118.x

    Article  PubMed  Google Scholar 

  • Hastings KK (1996) Juvenile survival and maternal strategies of Weddell seals in McMurdo Sound, Antarctica. M.Sc. Dissertation, University of Alaska

  • Hastings KK, Testa JW (1998) Maternal and birth colony effects on survival of Weddell seal offspring from McMurdo Sound, Antarctica. J Anim Ecol 67(5):722–740. doi:10.1046/j.1365-2656.1998.00242.x

    Article  Google Scholar 

  • Hastings KK, Testa JW, Rexstad EA (1999) Interannual variation in survival of juvenile Weddell seals (Leptonychotes weddellii) from McMurdo Sound, Antarctica: effects of cohort, sex and age. J Zool (Lond) 248:307–323. doi:10.1111/j.1469-7998.1999.tb01031.x

    Article  Google Scholar 

  • Hedrick PW (1996) Conservation genetics and molecular techniques: a perspective. In: Smith RB, Wayne RK (eds) Molecular genetic approaches in conservation. Oxford University Press, New York, pp 459–477

    Google Scholar 

  • Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett, Sudbury

    Google Scholar 

  • Hedrick PW, Lacy RC, Allendorf FW, Soule ME (1996) Directions in conservation biology: comments on caughley. Conserv Biol 10(5):1312–1320. doi:10.1046/j.1523-1739.1996.10051312.x

    Article  Google Scholar 

  • Hedrick PW, Gutierrez-Espeleta GA, Lee RN (2001) Founder effect in an island population of bighorn sheep. Mol Ecol 10(4):851–857. doi:10.1046/j.1365-294X.2001.01243.x

    Article  CAS  PubMed  Google Scholar 

  • Heine AJ (1960) Seals at White Island, Antarctica. Antarctic 2:272–273

    Google Scholar 

  • Heine AJ (1963) Ice breakout around the southern end of Ross Island, Antarctica. NZ J Geol Geophys 6:395–401

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18(1):1–32. doi:10.2307/2412407

    Article  Google Scholar 

  • Lacy RC, Ballou JD, Princee F (1995) Pedigree analysis for population management. In: Ballou JD, Gilpin M, Foose TJ et al (eds) Population management for survival and recovery. Columbia University Press, New York, pp 57–75

    Google Scholar 

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation, and their use in population management. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, pp 87–123

    Chapter  Google Scholar 

  • MacDonald WJP, Hatherton T (1961) Movement of the Ross Ice Shelf near scott base. J Glaciol 3(29):859–866

    Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655. doi:10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  • May RM (1995) The cheetah controversy. Nature 374(6520):309–310. doi:10.1038/374309a0

    Article  CAS  PubMed  Google Scholar 

  • Menotti-Raymond M, O’Brien SJ (1995) Hypervariable genomic variation to reconstruct the natural history of populations—lessons from the big cats. Electrophoresis 16(9):1771–1774. doi:10.1002/elps.11501601293

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Roychouddhoury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76(2):379–390

    CAS  PubMed  Google Scholar 

  • Nunney L, Campbell KA (1993) Assessing minimum viable population size—demography meets population genetics. Trends Ecol Evol 8(7):234–239. doi:10.1016/0169-5347(93)90197-W

    Article  Google Scholar 

  • Ostrander EA, Sprague GF, Rine J (1993) Identification and characterization of dinucleotide repeat (CA) n markers for genetic mapping in dog. Genomics 16(1):207–213. doi:10.1006/geno.1993.1160

    Article  CAS  PubMed  Google Scholar 

  • Packer C, Pusey AE, Rowley H et al (1991) Case study of a population bottleneck—lions of the ngorongoro crater. Conserv Biol 5(2):219–230. doi:10.1111/j.1523-1739.1991.tb00127.x

    Article  Google Scholar 

  • Paetkau D, Strobeck C (1995) The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol 4:519–520. doi:10.1111/j.1365-294X.1995.tb00248.x

    Article  CAS  PubMed  Google Scholar 

  • Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size Version 1.3. Department of Primary Industries and Fisheries, Queensland Government, Queensland

    Google Scholar 

  • Prebble MM (1967) Ice breakout, McMurdo Sound, Antarctica. NZ J Geol Geophys 11:908–921

    Google Scholar 

  • Proffitt KM, Garrott RA, Rotella JJ, Wheatley KE (2007) Environmental and senescent related variations in Weddell seal body mass: implications for age-specific reproductive performance. Oikos 116:1683–1690. doi:10.1111/j.0030-1299.2007.16139.x

    Article  Google Scholar 

  • Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics 144(1):383–387

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population Genetics Software for exact tests and ecumenicism. J Hered 86(3):248–249

    Google Scholar 

  • Riedman M (1990) The pinnipeds: seals, sea lions, and walruses. University of California Press, Berkeley

    Google Scholar 

  • Schreer JF, Hastings KK, Testa JW (1996) Preweaning mortality of Weddell seal pups. Can J Zool 74(9):1775–1778. doi:10.1139/z96-195

    Article  Google Scholar 

  • Seaver G (1933) Edward Wilson of the Antarctic: naturalist and friend: together with a memoir of Oriana Wilson. John Murray, London

    Google Scholar 

  • Senner J (1980) Inbreeding depression and survival of zoo populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland, pp 209–224

    Google Scholar 

  • Shaughnessy PD (1969) Transferrin polymorphism and population structure of Weddell seal Leptonychotes weddelli (Lesson). Aust J Biol Sci 22(6):1581–1584

    Google Scholar 

  • Shields GF, Kocher TD (1991) Phylogenetic relationships of North American ursids based on analysis of mitochondrial DNA. Evol Int J Org Evol 45(1):218–221. doi:10.2307/2409495

    CAS  Google Scholar 

  • Siniff DB, Demaster DP, Hofman RJ, Eberhardt LL (1977) Analysis of dynamics of a Weddell seal population. Ecol Monogr 47(3):319–335. doi:10.2307/1942520

    Article  Google Scholar 

  • Stewart BS, Yochem PK, Gelatt TS, Siniff DB (2000) Dispersion and habitat use of Weddell seals (Leptonychotes weddelli) in the Ross Sea, Antarctica, during their first year of life. In: Davison WC, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. Caxton Press, Christchurch, New Zealand, pp 71–76

    Google Scholar 

  • Stirling I (1966) The seals at White Island: a hypothesis on their origin. Antarctic 4:310–313

    Google Scholar 

  • Stirling I (1969) Ecology of Weddell Seal in McMurdo Sound, Antarctica. Ecology 50(4):573–586. doi:10.2307/1936247

    Article  Google Scholar 

  • Stirling I (1971a) Leptonychotes weddelli. Mamm Species 6:1–5. doi:10.2307/3503841

    Article  Google Scholar 

  • Stirling I (1971b) Variation in sex ratio of newborn Weddell seals during pupping season. J Mammal 52(4):842–844. doi:10.2307/1378943

    Article  Google Scholar 

  • Stirling I (1971c) Population dynamics of the Weddell seal (Leptonychotes weddelli) in McMurdo Sound, Antarctica, 1966–1968. In: Burt WH (ed) Antarctic pinnipedia. Antarctic research series, vol 18. American Geophysical Union, Washington, pp 141–161

    Google Scholar 

  • Stirling I (1972) Regulation of numbers of an apparently isolated population of Weddell seals (Leptonychotes weddelli). J Mammal 53(1):107–115. doi:10.2307/1378831

    Article  Google Scholar 

  • Stuart AW, Bull C (1963) Glaciological observations on the Ross Ice Shelf near scott base, Antarctica. J Glaciol 4(34):399–414

    Google Scholar 

  • Swithinbank C (1970) Ice movement in the McMurdo Sound area of Antarctica. In: Gow AJ et al. (eds) Proceedings of the international symposium on Antarctic glaciological exploration, Hanover, New Hampshire 3–7 September 1968. International Association of Scientific Hydrology

  • Testa JW (1994) Over-winter movements and diving behavior of female Weddell seals (Leptonychotes weddellii) in the Southwestern Ross Sea, Antarctica. Can J Zool 72(10):1700–1710. doi:10.1139/z94-229

    Article  Google Scholar 

  • Testa JW, Scotton BD (1999) Dynamics of an isolated population of Weddell seals (Leptonychotes weddellii) at White Island, Antarctica. J Mammal 80(1):82–90. doi:10.2307/1383210

    Article  Google Scholar 

  • Testa JW, Siniff DB (1987) Population dynamics of Weddell seals (Leptonychotes weddelli) in McMurdo Sound, Antarctica. Ecol Monogr 57(2):149–165. doi:10.2307/1942622

    Article  Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14(11):3335–3352. doi:10.1111/j.1365-294X.2005.02673.x

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7(2):167–184. doi:10.1007/s10592-005-9100-y

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8(4):753–756. doi:10.1111/j.1755-0998.2007.02061.x

    Article  Google Scholar 

  • Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics 175(1):219–233. doi:10.1534/genetics.106.065300

    Article  PubMed  Google Scholar 

  • Wilson EA (1907) Pinnipedia. In: Natural history. British National Antarctic Expedition 1901–04, vol 2. British Museum, London, pp 1–66

  • Worsley FA (1931) Endurance: an epic of polar adventure. W.W. Norton, New York

    Google Scholar 

Download references

Acknowledgments

Many persons graciously supplied samples, contacts, personal accounts, letters, field notes or pertinent reports, including J. Basset, M. Castellini, M. Crawley, A. DeVries, R. Eisert, L. Fuiman, R. Gee, B. Karl, H. Keys, G. Knox, G. Kooyman, L. Rea, C. Swithinbank, J. W. Testa and P. Wilson. Samples AF31, AF32, AF37 and AF0875 were provided by the University of Alaska museum, frozen tissue collection (J. A. Cook and G. H. Jarrell). We especially thank G. Knox for donating his field journals. M. Castellini, W. Testa and students, University of Alaska, Fairbanks, tagged seals and collected data at White Island, 1990–1994. K. Abernathy, A. Brunet, M. Cameron, C. Counard, S. Dahl, J. Degroot, R. Jensen, R. Johnson, D. McNulty, S. Melin, D. Monson, R. Reichle, B. Stewart and P. Yochem assisted with fieldwork during 1995–1999. R. Garrott, K. Proffitt and students at Montana State University provided recent population data collected since 2000. We thank D. Ainley, B. Dickerson, G. Duke, H. Huber, W. Testa, and two anonymous reviewers for manuscript reviews. Laboratory analyses were performed at the University of Alberta. Logistical support was provided by USAP. All sampling was carried out under US Marine Mammal Permit No. 976 and University of Minnesota Animal Care guidelines. This research was funded by National Science Foundation grants OPP-9420818 and OPP-9725820.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Gelatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelatt, T.S., Davis, C.S., Stirling, I. et al. History and fate of a small isolated population of Weddell seals at White Island, Antarctica. Conserv Genet 11, 721–735 (2010). https://doi.org/10.1007/s10592-009-9856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9856-6

Keywords

Navigation