Skip to main content

Advertisement

Log in

Small effective population sizes of two remnant ocelot populations (Leopardus pardalis albescens) in the United States

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Threatened populations are vulnerable to the effects of genetic drift and inbreeding, particularly when gene flow is low and the effective population size is small. Estimates of effective population size (N e ) provide important information on the status of endangered populations that have experienced severe fragmentation and serve as indicators of genetic viability. Genetic data from microsatellite loci were used to estimate N e for the 2 remaining populations of the endangered ocelot (Leopardus pardalis albescens) occurring in the United States. Several methods were used to calculate N e , resulting in estimates ranging from N e  = 8.0 (95% CI: 3.2–23.1) to 13.9 (95% CI: 7.7–25.1) for the population located at the Laguna Atascosa Wildlife Refuge in Cameron County, Texas. The ocelot population in Willacy County, Texas, had N e estimates of 2.9 (95% CI: 1.7–5.6) and 3.1 (95% CI: 1.9–13.5), respectively. Estimates of N e in both populations were below the critical value recommended for short-term viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aspi J, Roininem E, Ruokonen M, Kojola I, Vila C (2006) Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1576

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA (2003) Estimation of population growth or decline in genetically monitored populations. Genetics 164:1139–1160

    PubMed  CAS  Google Scholar 

  • Beltran JF, Tewes ME (1995) Immobilization of ocelots and bobcats with ketamine hydrochloride and xylazine hydrochloride. J Wildl Dis 31:43–48

    PubMed  CAS  Google Scholar 

  • Berthier P, Beaumont MA, Cornuet J-M, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics 160:741–751

    PubMed  CAS  Google Scholar 

  • Blair FW (1950) Biotic provinces of Texas. Tex J Sci 2:93–117

    Google Scholar 

  • Brook BW, Tonkyn DW, O’Grady JJ, Frankham R (2002) Contribution of inbreeding to extinction risk in threatened species. Conserv Ecol 6:1–16

    Google Scholar 

  • Caso A (1995) Home range and habitat use of three neotropical carnivores in northeast mexico. Thesis, Texas A&M University-Kingsville, Kingsville

  • CITES (2005) Convention on International Trade in Endangered Species of Wild Fauna and Flora. Geneva. http://www.cites.org. Accessed 10 February 2006

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270.

    Article  PubMed  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • Dublin LI, Lotka AJ (1925) On the true rate of natural increase as exemplified by the population of the United States, 1920. J Amer Statist Ass 20:305–339

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa, Skeels) endemic to Morocco. Theor Appl Genet 92:832–8309

    Article  Google Scholar 

  • Frankham R, Ralls K (1998) Conservation biology: inbreeding leads to extinction risk. Nature 392:441–442

    Article  CAS  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland, 135–149

    Google Scholar 

  • Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–71

    Article  Google Scholar 

  • Goudet J (2001) FSTAT (Version 2.9.3), A program to estimate and test gene diversities and fixation indices. Available from http://www.unil.ch/izea/ software/fstat.html

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Grigione M, Caso A, List R, Gonzalez-Lopez C (2001) Status and conservation of endangered cats along the U.S. – Mexico border. The Endangered Species Update 18:129–132

    Google Scholar 

  • Haines AM, Tewes ME, Laack LL (2005a) Survival and sources of mortality in ocelots. J Wildl Manage 69:255–263

    Article  Google Scholar 

  • Haines AM, Tewes ME, Laack LL, Grant WE, Young J (2005b) Evaluating recovery strategies for an ocelot population in southern Texas. Biol Conser 126:512–522

    Article  Google Scholar 

  • Haines AM, Grassman LI, Tewes ME, Janečka JE (2006a) The first ocelot (Leopardus pardalis) monitored via GPS telemetry. Eur J Wildl Res 52:216–218

    Article  Google Scholar 

  • Haines AM, Janečka J, Tewes ME, Grassman LI (2006b) The importance of private lands for ocelot Leopardus paradalis conservation in the United States using camera traps. Oryx 40:1–5

    Article  Google Scholar 

  • Haines AM, Tewes ME, Laack LL, Horne JS, Young JH (2006c) A habitat-based population viability analysis for ocelots (Leopardus pardalis) in the United States. Biol Conserv 132:424–436

    Article  Google Scholar 

  • Haines AM, Tewes ME, Laack LL, Horne J, Young J (2007) Corrigendum: Habitat based population viability analysis of ocelots in southern Texas. Biol Conserv 136:326–327

    Article  Google Scholar 

  • Harveson P, Laack LL, Tewes ME (2004) Spatial patterns and soil type use by ocelots in Texas. Wildlife Society Bulletin 32:948–954

    Article  Google Scholar 

  • Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Conser Biol 9:996–1007

    Article  Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Jackson VL, Laack LL, Zimmerman EG (2005) Landscape metrics associated with habitat use by ocelots in south Texas. J Wildl Manage 69:733–738

    Article  Google Scholar 

  • Jahrsdoerfer SE, Leslie DM (1988) Tamaulipan brushland of the Lower Rio Grande Valley of South Texas: descriptions, human impacts, and management options. US Fish and Wildlife Services, Biological Report 88:36–63

    Google Scholar 

  • Janečka JE (2006) Conservation genetics and ecology of ocelot with recovery implications in Texas. Dissertation, Texas A&M University-Kingsville and Texas A&M University, College Station, Texas

  • Janečka JE, Walker CW, Tewes ME, Caso A, Laack LL, Honeycutt RL (2007) Phylogenetic relationships of ocelot (Leopardus pardalis albescens) populations from Tamaulipan Biotic Province and implications for recovery. Southwestern Nat 52:89–96

    Article  Google Scholar 

  • Keller L, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–240

    Article  Google Scholar 

  • Laack LL (1991) Ecology of the Ocelot (Felis pardalis) in South Texas. Thesis, Texas A&I University, Kingsville

  • Laack LL, Tewes ME, Haines AH, Rappole JH (2005) Reproductive life history of ocelots Leopardus pardalis in southern Texas. Acta Theriol 50:505–514

    Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158

    Article  Google Scholar 

  • Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335

    Article  Google Scholar 

  • Laval G, San Cristobal M, Chevalet C (2003) Maximum-likelihood and Markov Chain Monte Carlo approaches to estimate inbreeding and effective size from allele frequency changes. Genetics 164:1189–1204

    PubMed  CAS  Google Scholar 

  • Liberg O, Andren H, Pedersen HC, Sand H, Sejberg D, Wabakken P, Akesson M, Bensch S (2005) Severe inbreeding depression in a wild wolf (Canis lupus) population. Biol Lett 1:17–20

    Article  PubMed  CAS  Google Scholar 

  • Longmire JL, Maltbie M, Baker RJ (1997) Use of “lysis buffer” in isolation and its implications for museum collections. Occasional Papers, Museum of Texas Tech University 163:1–3

    Google Scholar 

  • Ludlow ME, Sunquist ME (1987) Ecology and behavior of ocelots in Venezuela. Nat Geogr Res 3:447–461

    Google Scholar 

  • Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5:148–157

    Article  Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35.

    Article  CAS  Google Scholar 

  • Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Natl Acad Sci USA 100:434–439

    Article  CAS  Google Scholar 

  • Menotti-Raymond M, David VA, Lyons LA, Schäffer AA, Tomlin JF, Hutton MK, O’Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23

    Article  PubMed  CAS  Google Scholar 

  • Murray JL, Gardner GL (1997) Leopardus pardalis. Mammal Species 548:10–17

    Google Scholar 

  • Navarro LD, Rappole JH, Tewes ME (1993) Distribution of the endangered ocelot (Felis pardalis) in Texas and northeastern Mexico. In: Medellin RA, Ceballos G (eds) Advances en el Estudio de los Mamiferos de Mexico, Publicaciones Especiales. Asociacion Mexicana de Mastozoologia, México, 157–169

    Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

    PubMed  Google Scholar 

  • Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size, experimental populations of Clarkia pulchella. Evolution 51:354–362

    Article  Google Scholar 

  • Newman D, Tallmon DA (2001) Beneficial fitness effects of gene flow in recently isolated populations. Conserv Biol 15:1054–1063

    Article  Google Scholar 

  • Nowell K, Jackson P (1996) Wild Cats: Status, Survey and Conservation Action Plan. IUCN, Gland, Switzerland

    Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8:175–184

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peel D, Ovenden JR, Peel SL (2004) NeEstimator (Version 1.3): Software for estimating effective population size. Department of Primary Industries and Fisheries, Queensland Government, Deception Bay, Queensland

    Google Scholar 

  • Pimm SL, Dollar L, Bass OL Jr (2006) The genetic rescue of the Florida panther. Anim Conserv 9:115–122

    Article  Google Scholar 

  • Ralls KJ, Ballou D, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Her 86:24–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:22 –225

    Article  Google Scholar 

  • Roelke ME, Martenson JS, O’Brien SJ (1993) The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol 3:340–350.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Tallmon DA, Luikart G (1998) Review of DNA-based census and effective population size estimators. Anim Conser 1:293–299

    Article  Google Scholar 

  • Seal US, Thorne ET, Bogan MA, Anderson SH (1989) Conservation biology and the black-footed ferret. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Shindle DB, Tewes ME (1998) Woody species composition of habitats used by ocelots (Leopardus pardalis) in the Tamaulipan Biotic Province. Southw Nat 43:273–279

    Google Scholar 

  • Shindle DB, Tewes ME (2000) Immobilization of wild ocelots with tiletamine and zolazepam in southern Texas. J Wildl Dis 36:546–550

    PubMed  CAS  Google Scholar 

  • Smith JLD, McDougal C (1991) The contribution of variance in lifetime reproduction to effective population size in tigers. Conserv Biol 5:484–490

    Article  Google Scholar 

  • Sunquist ME, Sunquist F (2002) Wild cats of the world. University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Tallmon DA, Belleman E, Taberlet P (2004a) Genetic monitoring of Scandinavian brown bear effective population size. J Wildl Manage 68:960–965

    Article  Google Scholar 

  • Tallmon DA, Beaumont MA, Luikart GH (2004b) Effective population size estimation using approximate Bayesian computation. Genetics 167:977–988

    Article  PubMed  Google Scholar 

  • Tewes ME (1986) Ecological and behavioral correlates of ocelot spatial patterns. Dissertation, University of Idaho, Moscow, Idaho

  • Tewes ME, Everett DD (1986) Status and distribution of the endangered ocelot and jaguarundi in Texas. In: Miller SD, Everett DD (eds) Cats of the world: biology, conservation, and management. National Wildlife Federation, Washington, DC, pp. 147–158

    Google Scholar 

  • Uphyrkina O, Miquelle D, Quigley H, Driscoll C, O’Brien SJ (2002) Conservation genetics of the Far Eastern leopard (Panthera pardus oreintalis). J Hered 93:303–311

    Article  PubMed  CAS  Google Scholar 

  • USFWS (1999) Endangered and threatened wildlife and plants. US Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Vilà C, Sundqvist A-K, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2002) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B 270:90–97

    Google Scholar 

  • Walker CW (1997) Patterns of genetic variation in ocelot (Leopardus pardalis) populations for south texas and Northern Mexico. Dissertation, Texas A&M University-Kingsville and Texas A&M University, College Station, Texas

    Google Scholar 

  • Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257

    Article  PubMed  CAS  Google Scholar 

  • Wang JL (2004) Application of the one-migrant-per-generation rule to conservation and management. Conserv Biol 18:332–343

    Article  Google Scholar 

  • Wang JL (2005) Estimation of effective population sizes from data on genetic markers. Phil Trans R Soc Lond B 360:1395–1409

    Article  CAS  Google Scholar 

  • Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    PubMed  CAS  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    PubMed  CAS  Google Scholar 

  • Waples RS (1991) Genetic methods for estimating the effective size of Cetacean populations. Report of the International Whaling Commission Special Issue 13:279–300

    Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352

    Article  PubMed  CAS  Google Scholar 

  • Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics 175:219–233

    Article  PubMed  Google Scholar 

  • Westermeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    Article  Google Scholar 

  • Wildt DE, Bush M, Goodrowe KL, Packer C, Pusey AE, Brown JL, Joslin P, O’Brien SJ (1987) Reproductive and genetic consequences of founding isolated lion populations. Nature 329:328–331

    Article  Google Scholar 

  • Williamson EG, Slatkin M (1999) Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics 152:755–761

    PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, iv. variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

This study was funded by the Rob and Bessie Welder Wildlife Foundation, the Tim and Karen Hixon Foundation, and F. Yturria. We thank F. Yturria for access to his ranch and Randy DeYoung, Tyler Campbell, Michael Schwartz, and two anonymous reviewers for providing useful comments on this manuscript. This is publication #07–113 of the Caesar Kleberg Wildlife Research Institute and #666 of the Rob and Bessie Welder Wildlife Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Janečka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janečka, J.E., Tewes, M.E., Laack, L.L. et al. Small effective population sizes of two remnant ocelot populations (Leopardus pardalis albescens) in the United States. Conserv Genet 9, 869–878 (2008). https://doi.org/10.1007/s10592-007-9412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9412-1

Keywords

Navigation