Skip to main content

Advertisement

Log in

Conservation of taxonomically difficult species: the case of the Australian orchid, Microtis angusii

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

As species are the common currency for conservation efforts, their accurate description is essential for efficient preservation of biological diversity. The genus Microtis (Orchidaceae) is typified by a paucity of consistent morphological characters, confounding taxonomic attempts. We report the results of a study of the conservation genetics of the recently discovered, endangered Australian orchid species M. angusii (Jones). This species was known only from one small population, with identification of further populations hampered by taxonomic difficulties. We used a combination of 122 AFLP markers and DNA sequence variation in the ribosomal ITS gene region to investigate the population genetic structure of the type population of M.␣angusii. Six further putative M. angusii populations were also analysed with these markers. Two of these populations showed high genetic affinity to M. angusii, bearing identical ITS sequences. Both the type and a second population were invariable across all AFLP loci. The third population, 3 km distant, showed minor genetic differentiation. These two new populations warrant immediate protection. Phylogenetic relationships between M. angusii and close relatives revealed its genetic affiliation to an unidentified, more distant population, and to the species M. unifolia. Given the propensity in Microtis for both selfing and clonality, mechanisms that both reduce within population variability and promote divergence between isolated populations, we recommend an extended study of both the genetic structure and breeding systems in the M.␣angusii/M. unifolia group, in order to ensure that the protection provided is both adequate and justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265

    Article  PubMed  CAS  Google Scholar 

  • Bates R (1984) The genus Microtis R.Br. (Orchidaceae): a taxonomic revision with notes on biology. J. Adelaide Botanical Garden 7:45–89

    Google Scholar 

  • Brown R (1810) Prodomus florae Novae Hollandiae. J. Johnson & Co., London

    Google Scholar 

  • Clements MA, Jones DL, Sharma IK, Nightingale ME, Garratt MJ, Fitzgerald KJ, Mackenzie AM, Molloy BPJ (2002) Phylogenetic systematics of the Diurideae (Orchidaceae) based on the ITS and 5.8S coding region of nuclear ribosomal DNA. Lindleyana 17:135–171

    Google Scholar 

  • Cowling RM, Pressey RL (2001) Rapid plant diversification: planning for an evolutionary future. Proc. Natl. Acad. Sci. USA 98:5452–5457

    Article  PubMed  CAS  Google Scholar 

  • Crandall KA, Bininda-Edmonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15:290–295

    Article  PubMed  Google Scholar 

  • DeSalle R (2005) Conservation Genetics - Genetics at the brink of extinction. Heredity 94:386–387

    Article  PubMed  CAS  Google Scholar 

  • Forrest AD, Hollingsworth ML, Hollingsworth PM, Sydes C, Bateman RM (2004) Population genetic structure in European populations of Spiranthes romanzoffiana set in the context of other genetic studies on orchids. Heredity 92:218–227

    Article  PubMed  CAS  Google Scholar 

  • Frankel OH (1974) Genetic conservation: our evolutionary responsibility. Genetics 78:53–65

    Google Scholar 

  • Hedren M, Fay MF, Chase MW (2001) Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Am. J. Bot. 88:1868–1880

    CAS  Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol. Evol. 16:629–636

    Article  Google Scholar 

  • Hey J (2001) The mind of the species problem. Trends Ecol. Evol. 16:326–329

    Article  PubMed  Google Scholar 

  • Hogbin PM, Peakall R, Sydes MA (2000) Achieving practical outcomes from genetic studies of rare Australian plants. Aust. J. Bot. 48:375–382

    Article  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among matural populations of outcrossing buffalograss (Buchloe dactyloides (Nutt.) Engelm). Theo. Appl. Genet. 86:927–934

    Article  CAS  Google Scholar 

  • Jones DL (1996) Microtis angusii, a new species of Orchidaceae from Australia. The Orchadian 12:10–12

    Google Scholar 

  • Mace GM (2004) The role of taxonomy in species conservation. Philos. Trans. R. Soc. London B 359:711–719

    Article  Google Scholar 

  • Maguire TL, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor. Appl. Genet. 104:388–398

    Article  PubMed  CAS  Google Scholar 

  • Mant J, Bower CC, Weston PH, Peakall R (2005a) Phylogeography of pollinator-specific sexually deceptive Chiloglottis taxa (Orchidaceae): evidence for sympatric divergence. Mol. Ecol., in press

  • Mant J, Peakall R, Schiestl FP (2005b) Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus, Ophrys? Evolution, in press

  • Moritz C (1994) Defining “Evolutionary Significant Units” for conservation. Trends Ecol. Evol. 9:373–375

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51:238–254

    Article  PubMed  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14:389–394

    Article  PubMed  Google Scholar 

  • Nichols R (2001) Gene trees and species trees are not the same. Trends Ecol. Evol. 16:358–364

    Article  PubMed  Google Scholar 

  • O’Hanlon PC, Peakall R, Briese DT (1999) Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Mol. Ecol. 8:1239–1246

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Beattie AJ (1989) Pollination of the orchid Microtis parviflora R.Br. by flightless worker ants. Funct. Ecol. 3:515–522

    Article  Google Scholar 

  • Peakall R, Beattie AJ (1991) The genetic consequences of worker ant pollination on a selfcompatible, clonal orchid. Evolution 45:1837–1848

    Article  Google Scholar 

  • Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss (Buchloe dactyloides (Nutt.) Engelm.). Mol. Ecol. 4:135–147

    CAS  Google Scholar 

  • Peakall R, Sydes MA (1996) Defining priorities for achieving practical outcomes from the genetic studies of rare plants. In: stephens S, Maxwell S (eds) Back from the Brink: Refining the Threatened Species Recovery Process. Beatty & Sons, Surrey, pp. 119–129

    Google Scholar 

  • Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol. Ecol. 12:2331–2343

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2005) GenAlEx 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. The Australian National University, Canberra, Australia http://www.anu.edu.au/BoZo/GenAlEx/

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach HG (1871) Beitrage zur Systematischen Pflanzenkunde. Hamburg

  • Smith SD, Cowan RS, Gregg KB, Chase MW, Maxted N, Fay MF (2004) Genetic discontinuities among populations of Cleistes (Orchidaceae, Vanilloideae) in North America. Bot. J. Linn. Soc.145:87–95

    Article  Google Scholar 

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sunderland, MA

    Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutiony consaequences: a spasmodic journey to diversification. Biol. J. Linn. Soc. 84:1–54

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP – a new technique for DNA-fingerprinting. Nucleic Acids Res. 23:4407–4414

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Parks and Wildlife Service, New South Wales, Australia, the Australian National University and the Gatsby Foundation. We thank T. Duratovic, P. Eygelshoven, M. Price, J. Riley and K. Tuckey for making collections; David L. Jones for his expert advice; Dan Ebert and Ish Sharma for technical assistance; and Lyn Cook for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola S. Flanagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanagan, N.S., Peakall, R., Clements, M.A. et al. Conservation of taxonomically difficult species: the case of the Australian orchid, Microtis angusii . Conserv Genet 7, 847–859 (2006). https://doi.org/10.1007/s10592-006-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9119-8

Keywords

Navigation