Skip to main content
Log in

A novel approach for ellipsoidal outer-approximation of the intersection region of ellipses in the plane

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel technique for tight outer-approximation of the intersection region of a finite number of ellipses in 2-dimensional space is proposed. First, the vertices of a tight polygon that contains the convex intersection of the ellipses are found in an efficient manner. To do so, the intersection points of the ellipses that fall on the boundary of the intersection region are determined, and a set of points is generated on the elliptic arcs connecting every two neighbouring intersection points. By finding the tangent lines to the ellipses at the extended set of points, a set of half-planes is obtained, whose intersection forms a polygon. To find the polygon more efficiently, the points are given an order and the intersection of the half-planes corresponding to every two neighbouring points is calculated. If the polygon is convex and bounded, these calculated points together with the initially obtained intersection points will form its vertices. If the polygon is non-convex or unbounded, we can detect this situation and then generate additional discrete points only on the elliptical arc segment causing the issue, and restart the algorithm to obtain a bounded and convex polygon. Finally, the smallest area ellipse that contains the vertices of the polygon is obtained by solving a convex optimization problem. Through numerical experiments, it is illustrated that the proposed technique returns a tighter outer-approximation of the intersection of multiple ellipses, compared to conventional techniques, with only slightly higher computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that the generated intersection points on the boundary of \({\mathcal {E}}\), excluding the intersection points of ellipses, are not required to represent the polygon because they lie on its sides.

References

  1. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics (2001)

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  3. Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM, New Delhi (1994)

    Book  MATH  Google Scholar 

  4. Chang, C.T., Gorissen, B., Melchior, S.: Fast oriented bounding box optimization on the rotation group so(3;r). ACM Trans. Graph. 30(5), 122:1–122:16 (2011)

    Article  Google Scholar 

  5. Chernousko, F.L.: Ellipsoidal bounds for sets of attainability and uncertainty in control problems. Optim. Control Appl. Methods 3(2), 187–202 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eberly, D.: Intersection of ellipses, vol. 200. Geometric Tools (2000). https://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf

  7. Edelsbrunner, H., Guibas, L., Pach, J., Pollack, R., Seidel, R., Sharir, M.: Arrangements of curves in the planetopology, combinatorics, and algorithms. Theor. Comput. Sci. 92(2), 319–336 (1992)

    Article  MATH  Google Scholar 

  8. Freeman, H., Shapira, R.: Determining the minimum-area encasing rectangle for an arbitrary closed curve. Commun. ACM 18(7), 409–413 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gholami, M., Wymeersch, H., Gezici, S., Strom, E.: Distributed bounding of feasible sets in cooperative wireless network positioning. IEEE Commun. Lett. 17(8), 1596–1599 (2013)

    Article  Google Scholar 

  10. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming, version 2.1 (2014)

  11. Henk, M.: Löwner–John ellipsoids. Doc. Math. 95–106 (2012)

  12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  13. Kahan, W.: Circumscribing an ellipsoid about the intersection of two ellipsoids. Can. Math. Bull 11(3), 437–441 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klee, V., Laskowski, M.C.: Finding the smallest triangles containing a given convex polygon. J. Algorithms 6(3), 359–375 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurzhanski, A., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Springer, Berlin (1994)

    MATH  Google Scholar 

  16. Lahanas, M., Kemmerer, T., Milickovic, N., Karouzakis, K., Baltas, D., Zamboglou, N.: Optimized bounding boxes for three-dimensional treatment planning in brachytherapy. Med. Phys. 27(10), 2333–2342 (2000)

    Article  Google Scholar 

  17. Maksarov, D., Norton, J.: State bounding with ellipsoidal set description of the uncertainty. Int. J. Control 65(5), 847–866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matousek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4–5), 498–516 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. O’Rourke, J.: Finding minimal enclosing boxes. Int. J. Comput. Inf. Sci. 14(3), 183–199 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. O’Rourke, J., Chien, C.B., Olson, T., Naddor, D.: A new linear algorithm for intersecting convex polygons. Comput. Gr. Image Process. 19(4), 384–391 (1982)

    Article  MATH  Google Scholar 

  21. Post, M.J.: A minimum spanning ellipse algorithm. In: 22nd Annual Symposium on Foundations of Computer Science, pp. 115–122 (1981)

  22. Preparata, F., Muller, D.: Finding the intersection of n half-spaces in time o(n log n). Theor. Comput. Sci. 8(1), 45–55 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ros, L., Sabater, A., Thomas, F.: An ellipsoidal calculus based on propagation and fusion. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32(4), 430–442 (2002)

    Article  Google Scholar 

  24. Shor, N.Z., Berezovski, O.: New algorithms for constructing optimal circumscribed and inscribed ellipsoids. Optim. Methods Softw. 1(4), 283–299 (1992)

    Article  Google Scholar 

  25. Silverman, B.W., Titterington, D.M.: Minimum covering ellipses. SIAM J. Sci. Stat. Comput. 1(4), 401–409 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strum, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones (1998)

  27. Toussaint, G.: A simple linear algorithm for intersecting convex polygons. Vis. Comput. 1(2), 118–123 (1985)

    Article  MATH  Google Scholar 

  28. Toussaint, G.: Applications of the rotating calipers to geometric problems in two and three dimensions. Int. J. Digit. Inf. Wirel. Commun. 4(3), 372–386 (2014)

    Google Scholar 

  29. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New Results and New Trends in Computer Science: Graz, Austria, June 20–21, pp. 359–370. Springer, Berlin, Heidelberg (1991)

  30. Yousefi, S., Wymeersch, H., Chang, X., Champagne, B.: Tight 2-dimensional outer-approximation of feasible sets in wireless sensor networks. IEEE Commun. Lett. 20(3), 570–573 (2016)

    Article  Google Scholar 

  31. Zhang, J., Sastary, S.: Distributed position estimation for sensor networks. In: Proceedings of the 15th Triennial World Congress, Barcelona (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Yousefi.

Additional information

Funding for this work was provided in parts by research grants from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, S., Chang, XW., Wymeersch, H. et al. A novel approach for ellipsoidal outer-approximation of the intersection region of ellipses in the plane. Comput Optim Appl 69, 383–402 (2018). https://doi.org/10.1007/s10589-017-9952-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9952-3

Keywords

Navigation