Skip to main content

Advertisement

Log in

Hemodynamic shear stress induces protective autophagy in HeLa cells through lipid raft-mediated mechanotransduction

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

During metastatic dissemination, cancer cells experience shear stresses in narrow confinements of in vivo vasculature. Such stresses are currently known to influence a gamut of cellular processes. While a host of cells emanating from a primary tumor perish in circulation due to shear, some cells manage to migrate to distant niches and form secondary tumors. Current research focuses on how cancer cells avert such mechanical stresses and adapt themselves in order to survive. This study deals with the autophagic response of cervical cancer cells HeLa and its subline HeLa 229, exposed to physiological shear stresses in vitro, and evaluates its role as a pro-survival mechanism. It also delineates the probable mechanotransduction pathway that is involved in eliciting the stress-adaptive response in cervical cancer cells. Our results show that shear stress of physiological regime elicits protective autophagy in cervical cancer cells as an immediate response and inhibiting the same, leads to early onset of apoptosis. An effort to study the underlying mechanotransduction revealed that autophagy induction by shear stress requires intact lipid rafts which serve as signalling platforms to trigger phosphorylation of p38 mitogen activated protein kinases, leading to autophagy. This study thus gives novel insights into the mechanobiology of cervical cancer and hints at promising therapeutic targets in metastasis, the major cause of cancer mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Talmadge JJE, Fidler IJ, Series AACRC (2010) The biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669. https://doi.org/10.1158/0008-5472.CAN-10-1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Makale M (2007) Cellular mechanobiology and cancer metastasis. Birth Defects Res C Embryo Today 81:329–343. https://doi.org/10.1002/bdrc.20110

    Article  PubMed  CAS  Google Scholar 

  3. Leytin V, Allen DJ, Mykhaylov S, Mis L, Lyubimov EV, Garvey B, Freedman J (2004) Pathologic high shear stress induces apoptosis events in human platelets. Biochem Biophys Res Commun 320:303–310. https://doi.org/10.1016/j.bbrc.2004.05.166

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell MJ, King MR (2013) Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New J Phys. https://doi.org/10.1088/1367-2630/15/1/015008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnes JM, Nauseef JT, Henry MD (2012) Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS ONE 7:e50973. https://doi.org/10.1371/journal.pone.0050973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lien S-C, Chang S-F, Lee P-L, Wei S-Y, Chang MD-T, Chang J-Y, Chiu J-J (2013) Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta 1833:3124–3133. https://doi.org/10.1016/j.bbamcr.2013.08.023

    Article  PubMed  CAS  Google Scholar 

  7. Bialik S, Simon H, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975. https://doi.org/10.1038/cdd.2009.33

    Article  PubMed  CAS  Google Scholar 

  8. Yang ZJ, Chee CE, Huang S, Sinicrope F (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541. https://doi.org/10.1158/1535-7163.MCT-11-0047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. King JS, Veltman DM, Insall RH (2011) The induction of autophagy by mechanical stress. Autophagy 7:1490–1499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Das T, Maiti TK, Chakraborty S (2011) Augmented stress-responsive characteristics of cell lines in narrow confinements. Integr Biol (Camb) 3:684–695. https://doi.org/10.1039/c1ib00001b

    Article  CAS  Google Scholar 

  11. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39. https://doi.org/10.1038/35036052

    Article  PubMed  CAS  Google Scholar 

  12. Roy B, Das T, Mishra D, Maiti TK, Chakraborty S (2014) Oscillatory shear stress induced calcium flickers in osteoblast cells. Integr Biol (Camb) 6:289–299. https://doi.org/10.1039/c3ib40174j

    Article  CAS  Google Scholar 

  13. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667. https://doi.org/10.1194/jlr.R200021-JLR200

    Article  PubMed  CAS  Google Scholar 

  14. Roy B, Pattanaik AK, Das J, Bhutia SK, Behera B, Singh P, Maiti TK (2014) Role of PI3K/Akt/mTOR and MEK/ERK pathway in concanavalin A induced autophagy in HeLa cells. Chem Biol Interact 210:96–102. https://doi.org/10.1016/j.cbi.2014.01.003

    Article  PubMed  CAS  Google Scholar 

  15. Chen X, Li M, Li L, Xu S, Huang D, Ju M, Huang J, Chen K, Gu H (2016) Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci Rep 6:28423. https://doi.org/10.1038/srep28423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452–460. https://doi.org/10.4161/auto.4451

    Article  PubMed  CAS  Google Scholar 

  17. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103. https://doi.org/10.1016/j.ymeth.2003.11.023

    Article  PubMed  CAS  Google Scholar 

  18. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho R, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107:1470–1482. https://doi.org/10.1161/CIRCRESAHA.110.227371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Luo C, Wu C, Ch H (2014) Biochimica et biophysica acta radiation sensitization of tumor cells induced by shear stress: the roles of integrins and FAK. BBA Mol Cell Res 1843:2129–2137. https://doi.org/10.1016/j.bbamcr.2014.06.007

    Article  CAS  Google Scholar 

  20. Couzon C, Duperray A, Verdier C (2009) Critical stresses for cancer cell detachment in microchannels. Eur Biophys J 38:1035–1047. https://doi.org/10.1007/s00249-009-0506-1

    Article  PubMed  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  22. Devi KSP, Krishna D, Das J, Agarwal T, Kumari K, Maji S, Ghosh SK, Maiti TK (2016) Molecular mechanisms associated with particulate and soluble heteroglycan mediated immune response. J Cell Biochem 1593:1580–1593. https://doi.org/10.1002/jcb.25449

    Article  CAS  Google Scholar 

  23. Yang Y, Hu L, Zheng H, Mao C, Hu W, Xiong K, Wang F (2013) Application and interpretation of current autophagy inhibitors and activators. Nat Publ Gr 34:625–635. https://doi.org/10.1038/aps.2013.5

    Article  CAS  Google Scholar 

  24. Jaber N, Dou Z, Chen J-S, Catanzaro J, Jiang Y-P, Ballou LM, Selinger E, Ouyang X, Lin RZ, Zhang J, Zong W-X (2012) Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci USA 109:2003–2008. https://doi.org/10.1073/pnas.1112848109

    Article  PubMed  Google Scholar 

  25. Wu Y-T, Tan H-L, Shui G, Bauvy C, Huang Q, Wenk MR, Ong C-N, Codogno P, Shen H-M (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861. https://doi.org/10.1074/jbc.M109.080796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ding Y, Yang X, Wu Y, Xing C (2014) Autophagy promotes the survival and development of tumors by participating in the formation of vasculogenic mimicry. Oncol Rep. https://doi.org/10.3892/or.2014.3087

    Article  PubMed  Google Scholar 

  27. Tao L, Zhou X, Shen C (2014) Tetrandrine induces apoptosis and triggers a caspase cascade in U2-OS and MG-63 cells through the intrinsic and extrinsic pathways. Mol Med Rep. https://doi.org/10.3892/mmr.2013.1761

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hayes S, Huang X, Kambhampati S, Platanias LC, Bergan RC (2003) p38 MAP kinase modulates Smad-dependent changes in human prostate cell adhesion. Oncogene 22:4841–4850. https://doi.org/10.1038/sj.onc.1206730

    Article  PubMed  CAS  Google Scholar 

  29. Hacke M, Björkholm P, Hellwig A, Himmels P, de Almodóvar CR, Brügger B, Wieland F, Ernst AM (2015) Inhibition of Ebola virus glycoprotein-mediated cytotoxicity by targeting its transmembrane domain and cholesterol. Nat Commun 6:7688. https://doi.org/10.1038/ncomms8688

    Article  PubMed  Google Scholar 

  30. Milisav I, Poljsak B, Suput D (2012) Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 13:10771–10806. https://doi.org/10.3390/ijms130910771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tse JM, Cheng G, Tyrrell J, Wilcox-Adelman S, Boucher Y, Jain RK, Munn LL (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA 109:911–916. https://doi.org/10.1073/pnas.1118910109

    Article  PubMed  Google Scholar 

  32. Mitchell JS, Brown WS, Woodside DG, Vanderslice P, McIntyre BW (2009) Clustering T cell GM1 lipid rafts increases cellular resistance to shear on fibronectin through changes in integrin affinity and cytoskeletal dynamics, HHS public access. Immunol Cell Biol 87:324–336. https://doi.org/10.1038/icb.2008.103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Malorni W, Giammarioli AM, Garofalo T, Sorice M (2007) Dynamics of lipid raft components during lymphocyte apoptosis: the paradigmatic role of GD3. Apoptosis. 12:941–949. https://doi.org/10.1007/s10495-007-0757-1

    Article  PubMed  CAS  Google Scholar 

  34. Kim JK, Kim SH, Cho HY, Shin HS, Sung HR, Jung JR, Quan ML, Jiang DH, Bae HR (2010) GD3 accumulation in cell surface lipid rafts prior to mitochondrial targeting contributes to Amyloid-β-induced apoptosis. J Korean Med Sci 25:1492–1498. https://doi.org/10.3346/jkms.2010.25.10.1492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Matarrese P, Garofalo T, Manganelli V, Gambardella L, Marconi M, Grasso M, Tinari A, Misasi R, Malorni W, Sorice M (2014) Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10:750–765. https://doi.org/10.4161/auto.27959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Park H, Go YM, St PL. John MC, Maland MP, Lisanti DR, Abrahamson H, Jot (1999) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273:32304–32311. https://doi.org/10.1074/jbc.273.48.32304

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Indian Institute of Technology Kharagpur, India. Mr. Joyjyoti Das sincerely acknowledges IIT Kharagpur for his doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas K. Maiti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 1139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, J., Maji, S., Agarwal, T. et al. Hemodynamic shear stress induces protective autophagy in HeLa cells through lipid raft-mediated mechanotransduction. Clin Exp Metastasis 35, 135–148 (2018). https://doi.org/10.1007/s10585-018-9887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9887-9

Keywords

Navigation