Skip to main content

Advertisement

Log in

Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase, reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100 %), adrenal glands (72 %), mesentery (22 %), liver (17 %), and the thoracic cavity (6 %). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed a reduction in adrenal gland tumors corresponding to a 54 % (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holstein SA, Hohl RJ (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39(4):293–309

    Article  CAS  PubMed  Google Scholar 

  2. LaRosa JC, He J, Vupputuri S (1999) Effect of statins on risk of coronary disease - A meta-analysis of randomized controlled trials. Jama J Am Med Assoc 282(24):2340–2346

    Article  CAS  Google Scholar 

  3. Saad F, Lipton A (2007) Clinical benefits and considerations of bisphosphonate treatment in metastatic bone disease. Semin Oncol 34(6):S17–S23

    Article  CAS  PubMed  Google Scholar 

  4. Brown JE et al (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97(1):59–69

    Article  CAS  PubMed  Google Scholar 

  5. Russell RGG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25(1):97–106

    Article  CAS  PubMed  Google Scholar 

  6. van Beek E et al (1999) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 264(1):108–111

    Article  PubMed  Google Scholar 

  7. Bergstrom JD et al (2000) Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 373(1):231–241

    Article  CAS  PubMed  Google Scholar 

  8. Maltese WA (1990) Posttranslational modification of proteins by isoprenoids in mammalian-cells. Faseb J 4(15):3319–3328

    CAS  PubMed  Google Scholar 

  9. Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386

    Article  CAS  PubMed  Google Scholar 

  10. Coxon FP et al (2000) Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res 15(8):1467–1476

    Article  CAS  PubMed  Google Scholar 

  11. Coxon FP, Rogers MJ (2003) The role of prenylated small GTP-binding proteins in the regulation of osteoclast function. Calcif Tissue Int 72(1):80–84

    Article  CAS  PubMed  Google Scholar 

  12. Luckman SP et al (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13(4):581–589

    Article  CAS  PubMed  Google Scholar 

  13. O’Brien LE et al (2001) Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 3(9):831–838

    Article  PubMed  Google Scholar 

  14. Quinlan MP (1999) Rac regulates the stability of the adherens junction and its components, thus affecting epithelial cell differentiation and transformation. Oncogene 18(47):6434–6442

    Article  CAS  PubMed  Google Scholar 

  15. Braga VMM et al (2000) Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol Biol Cell 11(11):3703–3721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Braga VMM et al (1997) The small GTPases rho and rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137(6):1421–1431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zondag GCM et al (2000) Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 149(4):775–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Worthylake RA et al (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154(1):147–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Matsumoto Y et al (2001) Small GTP-binding protein, Rho, both increased and decreased cellular motility, activation of matrix metalloproteinase 2 and invasion of human osteosarcoma cells. Jpn J Cancer Res 92(4):429–438

    Article  CAS  PubMed  Google Scholar 

  20. Adamson P et al (1999) Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a Rho-dependent pathway. J Immunol 162(5):2964–2973

    CAS  PubMed  Google Scholar 

  21. Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535

    Article  CAS  PubMed  Google Scholar 

  22. Platz EA (2009) Does statin use affect the risk of developing prostate cancer? Nat Clin Pract Urol 6(2):70–71

    Article  PubMed  Google Scholar 

  23. Hamilton RJ et al (2010) Statin medication use and the risk of biochemical recurrence after radical prostatectomy results from the Shared Equal Access Regional Cancer Hospital (SEARCH) Database. Cancer 116(14):3389–3398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. N Engl J Med 367(19):1792–1802

    Article  CAS  PubMed  Google Scholar 

  25. Murtola TJ et al (2007) Cholesterol-lowering drugs and prostate cancer risk: a population-based case-control study. Cancer Epidemiol Biomark Prevent 16(11):2226–2232

    Article  CAS  Google Scholar 

  26. Murtola TJ et al (2008) Statins and prostate cancer prevention: where we are now, and future directions. Nat Clin Pract Urol 5(7):376–387

    Article  CAS  PubMed  Google Scholar 

  27. Lustman A et al (2014) Statin use and incident prostate cancer risk: does the statin brand matter? A population-based cohort study. Prostate Cancer Prostatic Dis 17(1):6–9

    Article  CAS  PubMed  Google Scholar 

  28. Yu O et al (2014) Use of statins and the risk of death in patients with prostate cancer. J Clin Oncol 32(1):5 U77

    Article  Google Scholar 

  29. Corsini A et al (1999) New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 84(3):413–428

    Article  CAS  PubMed  Google Scholar 

  30. Reinoso RF et al (2002) Preclinical pharmacokinetics of statins. Methods Find Exp Clin Pharmacol 24(9):593–613

    CAS  PubMed  Google Scholar 

  31. Sasaki A et al (1995) Bisphosphonate risedronate reduces metastatic human breast-cancer burden in bone in nude-mice. Cancer Res 55(16):3551–3557

    CAS  PubMed  Google Scholar 

  32. Holstein SA, Hohl RJ (2011) Isoprenoid biosynthetic pathway inhibition disrupts monoclonal protein secretion and induces the unfolded protein response pathway in multiple myeloma cells. Leukemia Res 35(4):551–559

    Article  CAS  Google Scholar 

  33. Holstein SA, Tong HX, Hohl RJ (2010) Differential activities of thalidomide and isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Leukemia Res 34(3):344–351

    Article  CAS  Google Scholar 

  34. Wasko BM, Dudakovic A, Hohl RJ (2011) Bisphosphonates induce autophagy by depleting geranylgeranyl diphosphate. J Pharmacol Exp Ther 337(2):540–546

    Article  CAS  PubMed  Google Scholar 

  35. Wasko BM et al (2010) Identification and characterization of novel bisphosphonate inhibitors of squalene synthase. Faseb J 24:681

    Google Scholar 

  36. Weivoda MM, Hohl RJ (2011) The effects of direct inhibition of geranylgeranyl pyrophosphate synthase on osteoblast differentiation. J Cell Biochem 112(6):1506–1513

    Article  CAS  PubMed  Google Scholar 

  37. Wiemer AJ, Hohl RJ, Wiemer DF (2009) The intermediate enzymes of isoprenoid metabolism as anticancer targets. Anti-Cancer Agents Med Chem 9(5):526–542

    Article  CAS  Google Scholar 

  38. Zhou X et al (2014) Synthesis of isoprenoid bisphosphonate ethers through C–P bond formations: potential inhibitors of geranylgeranyl diphosphate synthase. Beilstein J Org Chem 10:1645–1650

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hohl RJ et al (1991) Inhibition of hydroxymethylglutaryl coenzyme A reductase activity induces a paradoxical increase in DNA synthesis in myeloid leukemia cells. Blood 77(5):1064–1070

    CAS  PubMed  Google Scholar 

  40. Hohl RJ, Lewis K (1995) Differential-effects of monoterpenes and lovastatin on ras processing. J Biol Chem 270(29):17508–17512

    Article  CAS  PubMed  Google Scholar 

  41. Hohl RJ et al (1998) Stereochemistry-dependent inhibition of RAS farnesylation by farnesyl phosphonic acids. Lipids 33(1):39–46

    Article  CAS  PubMed  Google Scholar 

  42. Hohl RJ, LewisTibesar K (1995) Targeting the isoprenoid pathway for antileukemia therapy in humans. Blood 86(10):3039

    Google Scholar 

  43. Hohl RJ et al (1996) Differential effects of isoprenoid phosphonic acids on RAS farnesylation and cholesterol synthesis. J Investig Med 44(7):A342

    Google Scholar 

  44. Hohl RJ et al (1996) Inhibition of RAS farnesylation by isoprenoid phosphonic acids. Clin Pharmacol Ther 59(2):PII39

    Article  Google Scholar 

  45. Weivoda MM, Hohl RJ (2012) Geranylgeranyl pyrophosphate stimulates PPAR gamma expression and adipogenesis through the inhibition of osteoblast differentiation. Bone 50(2):467–476

    Article  CAS  PubMed  Google Scholar 

  46. Maalouf MA (2006) Synthesis of isoprenoids incorporating a fluorescent label and evaluation of their effect on the mevalonate pathway. Chemistry. University of Iowa, Iowa City, IA

  47. Drake JM, Gabriel CL, Henry MD (2005) Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging. Clin Exp Metastasis 22(8):674–684

    Article  PubMed  Google Scholar 

  48. Dunford JE et al (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro nd inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296(2):235–242

    CAS  PubMed  Google Scholar 

  49. Tong H, Holstein SA, Hohl RJ (2005) Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 336(1):51–59

    Article  CAS  PubMed  Google Scholar 

  50. Smith PK et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  51. Drake JM, Danke JR, Henry MD (2010) Bone-specific growth inhibition of prostate cancer metastasis by atrasentan. Cancer Biol Ther 9(8):607–614

    Article  CAS  PubMed  Google Scholar 

  52. Ghosh PM et al (1999) Role of RhoA activation in the growth and morphology of a murine prostate tumor cell line. Oncogene 18(28):4120–4130

    Article  CAS  PubMed  Google Scholar 

  53. Wakchoure S et al (2006) Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo. Clin Cancer Res 12(9):2862–2868

    Article  CAS  PubMed  Google Scholar 

  54. Clezardin P (2011) Bisphosphonates’ antitumor activity: an unravelled side of a multifaceted drug class. Bone 48(1):71–79

    Article  CAS  PubMed  Google Scholar 

  55. Fournier P et al (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62(22):6538–6544

    CAS  PubMed  Google Scholar 

  56. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Investig 114(5):623–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Hiraga T et al (2004) Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res 10(13):4559–4567

    Article  CAS  PubMed  Google Scholar 

  58. Ory B et al (2005) Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice. Cancer 104(11):2522–2529

    Article  CAS  PubMed  Google Scholar 

  59. Tuomela JM et al (2008) Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice. BMC Cancer 8:81

    Article  PubMed Central  PubMed  Google Scholar 

  60. Yamagishi S et al (2004) Minodronate, a newly developed nitrogen-containing bisphosphonate, suppresses melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling. Am J Pathol 165(6):1865–1874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Virtanen SS et al (2002) Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62(9):2708–2714

    CAS  PubMed  Google Scholar 

  62. Bubendorf L et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31(5):578–583

    Article  CAS  PubMed  Google Scholar 

  63. Gandaglia G et al (2014) Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate 74(2):210–216

    Article  PubMed  Google Scholar 

  64. Shah RB et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64(24):9209–9216

    Article  CAS  PubMed  Google Scholar 

  65. Nancollas GH et al (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38(5):617–627

    Article  CAS  PubMed  Google Scholar 

  66. Lyons LS et al (2008) Ligand-independent activation of androgen receptors by rho gtpase signaling in prostate cancer. Mol Endocrinol 22(3):597–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Knight-Krajewski S et al (2004) Deregulation of the Rho GTPase, Rac1, suppresses cyclin-dependent kinase inhibitor p21(CIP1) levels in androgen-independent human prostate cancer cells. Oncogene 23(32):5513–5522

    Article  CAS  PubMed  Google Scholar 

  68. Lin K-T et al (2012) Vav3-Rac1 signaling regulates prostate cancer metastasis with elevated Vav3 expression correlating with prostate cancer progression and posttreatment recurrence. Cancer Res 72(12):3000–3009

    Article  CAS  PubMed  Google Scholar 

  69. Qin J et al (2009) Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis. Oncogene 28(16):1853–1863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Engers R et al (2007) Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer 14(2):245–256

    Article  CAS  PubMed  Google Scholar 

  71. Russell DW (1992) Cholesterol-biosynthesis and metabolism. Cardiovasc Drugs Ther 6(2):103–110

    Article  CAS  PubMed  Google Scholar 

  72. Schroepfer GJ (1982) Sterol biosynthesis. Annu Rev Biochem 51:555–585

    Article  CAS  PubMed  Google Scholar 

  73. Murthy S, Tong H, Hohl RJ (2005) Regulation of fatty acid synthesis by farnesyl pyrophosphate. J Biol Chem 280(51):41793–41804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nadine Bannick for her support in utilizing the bioluminescence imager and James E Dunford for graciously providing the GGDPS enzyme. This project was supported in part by the Roy J. Carver Charitable Trust, the Roland W. Holden Family Program for Experimental Therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Hohl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reilly, J.E., Neighbors, J.D., Tong, H. et al. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis. Clin Exp Metastasis 32, 555–566 (2015). https://doi.org/10.1007/s10585-015-9727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9727-0

Keywords

Navigation