Skip to main content
Log in

Modeling soil thermal and hydrological dynamics and changes of growing season in Alaskan terrestrial ecosystems

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Abundant evidence indicates the growing season has been changed in the Alaskan terrestrial ecosystems in the last century as climate warms. Reasonable simulations of growing season length, onset, and ending are critical to a better understanding of carbon dynamics in these ecosystems. Recent ecosystem modeling studies have been slow to consider the interactive effects of soil thermal and hydrological dynamics on growing season changes in northern high latitudes. Here, we develop a coupled framework to model these dynamics and their effects on plant growing season at a daily time step. In this framework, we (1) incorporate a daily time step snow model into our existing hydrological and soil thermal models and (2) explicitly model the moisture effects on soil thermal conductivity and heat capacity and the effects of active layer depth and soil temperature on hydrological dynamics. The new framework is able to well simulate snow depth and soil temperature profiles for both boreal forest and tundra ecosystems at the site level. The framework is then applied to Alaskan boreal forest and tundra ecosystems for the period 1923–2099. Regional simulations show that (1) for the historical period, the growing season length, onset, and ending, estimated based on the mean soil temperature of the top 20 cm soils, and the annual cycle of snow dynamics, agree well with estimates based on satellite data and other approaches and (2) for the projected period, the plant growing season length shows an increasing trend in both tundra and boreal forest ecosystems. In response to the projected warming, by year 2099, (1) the snow-free days will be increased by 41.0 and 27.5 days, respectively, in boreal forest and tundra ecosystems and (2) the growing season lengths will be more than 28 and 13 days longer in boreal forest and tundra ecosystems, respectively, compared to 2010. Comparing two sets of simulations with and without considering feedbacks between soil thermal and hydrological dynamics, our analyses suggest coupling hydrological and soil thermal dynamics in Alaskan terrestrial ecosystems is important to model ecosystem dynamics, including growing season changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsenault D, Payette S (1992) A postfire shift from lichen-spruce to lichen-tundra vegetation at tree line. Ecology 73(3):1067–1081

    Article  Google Scholar 

  • Balland V, Arp PA (2005) Modeling soil thermal conductivities over a wide range of conditions. J Environ Eng Sci 4:549–558. doi:10.1139/S05–007

    Article  Google Scholar 

  • Balshi MS, McGuire AD, Zhuang Q, Mellio J, Kicklighter DW, Kasichke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J Geophys Res 112:G02029. doi:10.1029/2006JG000380

    Article  Google Scholar 

  • Beringer J, Lynch AH, Stuart CE, Mack M, Bonan GB (2001) The representation of arctic soils in the land surface model: the importance of mosses. J Climate 14:3324–3335

    Article  Google Scholar 

  • Bunn AG, Goetz SJ, Kimball JS, Zhang K (2007) Northern high-latitude ecosystems respond to climate change. Transactions, American Geophysical Union (EOS) 88(34):333–335

    Article  Google Scholar 

  • Cherkauer KA, Lettenmaier DP (1999) Hydrologic effects of frozen soils in the upper Mississippi river basin. J Geophys Res 104(D16):19599–19610

    Article  Google Scholar 

  • Coughlan JC, Running SW (1997) Regional ecosystem simulation: a general model for simulating snow accumulation and melt in mountainous terrain. Landsc Ecol 12:119–136

    Article  Google Scholar 

  • Decker M, Zeng X (2006) An empirical formulation of soil ice fraction based on in situ observations. Geophys Res Lett 33:L05402. doi:10.1029/2005GL024914

    Article  Google Scholar 

  • Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, response to interannual variability, and decadal trends. Glob Chang Biol 13:577–590. doi:10.1111/j.1365-2486.2006.01221.x

    Article  Google Scholar 

  • Dye DG (2002) Variability and trends in the annual snow-cover cycle in northern hemisphere land areas, 1972–2000. Hydrol Process 16:3065–3077. doi:10.1002/hyp.1089

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville R, Dye DG, Kimball JS, McDonald KC, Mellilo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Chang Biol 12:731–750. doi:10.1111/j.1365-2486.2006.01113.x

    Article  Google Scholar 

  • FAO-Unesco (1990) Soil map of the world. Revised legend, Tech. rep., FAO, Rome, world Soil Resources. Rep. 60

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. PNAS 102(38). doi:10.1073/pnas.0506179102

    Google Scholar 

  • Goodrich LE (1976) A numerical model for assessing the influence of snow cove on the ground thermal regime. Ph.D. thesis, McGill Univ., Montreal, Quebec

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Genio AD, Kock D, Lacis A, Lo K, Novakov SMT, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435. doi:10.1126/science.1110252

    Article  Google Scholar 

  • Helvey JD, Patric JH (1965) Canopy and litter interception of rainfall by hardwoods of Eastern United States. Water Resour Res 1(2):193–206

    Article  Google Scholar 

  • Iwata Y, Hayashi M, Hirota T (2008) Comparison of snowmelt infiltration under different soil-freezing conditions influenced by snow cover. Vadose Zone J 7:79–86. doi:10.2136/vzj2007.0089

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  Google Scholar 

  • Jia GJ, Epstein HE, Walker DA (2003) Greening of arctic Alaska, 1981–2001. Geophys Res Lett 30:2067. doi:10.1029/2003GL018268

    Article  Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37(2):173–199

    Article  Google Scholar 

  • Karvonen T (2003) Influence of global climatic change on different hydrological variables. www.water.hut.fi/wr/kurssit/Yhd-12.135/kirja/paa e.htm

  • Kimball JS, McDonald KC, Frolking S, Running SW (2004) Radar remote sensing of the spring thaw transition across a boreal landscape. Remote Sens Env 89:163–175

    Article  Google Scholar 

  • Kimball JS, Zhao M, McGuire AD, Heinsch FA, Clein J, Calef M, Jolly WM, Kang SM, Euskirchen SE, McDonald KC, Running SW (2007) Recent climate-driven increases in vegetation productivity for the western arctic: evidence of an acceleration of the northern terrestrial carbon cycle. Earth Interact 11:1–30

    Article  Google Scholar 

  • Kittel TGF, Rosenbloom NA, Kaufman C, Royle JA, Daly C, Fisher HH,Gibson WP, Aulenbach S, McKeown R, Schimel DS, VEMAP2 Participants (2000) VEMAP phase 2 historical and future scenario climate database. http://www.cgd.ucar.edu/vemap

  • Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ (2008) Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J Geophys Res 113:F02011. doi:10.1029/2007JF000883

    Article  Google Scholar 

  • Lundin L (1990) Hydraulic properties in an operational model of frozen soil. J Hydrol 118:289–310

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  • Oleson KW, Dai Y, Bonan G, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu GY, Thornton P, Vertenstein M, Yang ZL, Zeng X (2004) Technical description of the community land model (CLM), nCAR/TN-461+STR

  • Rankinen K, Karvonen T, Butterfield D (2004) A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing. Hydrol Earth Syst Sci 8(4):706–716

    Article  Google Scholar 

  • Riseborough D, Shiklomanov N, Etzelmuller B, Marchenko S (2008) Recent advances in permafrost modeling. Permafr Periglac Process 19(2):137–156. doi:10.1002/ppp.615

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Ranson KJ, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald D, Jarvis PG, Gower ST, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) BOREAS in 1997: experiment overview, scientific results, and future directions. J Geophys Res 102(D24):28731–28769

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46:159–207

    Article  Google Scholar 

  • Shachter RD, Peot MA (1989) Simulation approaches to general probabilistic inference on belief networks. In: Uncertainty in artificial intelligence, vol 5. Elsevier Science Publishing Company, Inc, New York, NY, pp. 221–231

  • Sharratt BS (1992) Growing season trends in the Alaskan climate record. Arctic 45(2):124–127

    Google Scholar 

  • Shaver GR, Jonasson S (2007) Response of Arctic ecosystems to climate change: result of long-term field experiments in Sweden and Alaska. Polar Res 18(2):245–252

    Article  Google Scholar 

  • Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops—an energy combination theory. Q J Royal Meteorol Soc 111:839–855

    Article  Google Scholar 

  • Slayback DA, Pinzon JE, Los OS, Tucker CJ (2003) Northern hemisphere photosynthesis trends 1982–1999. Glob Chang Biol 9:1–15

    Article  Google Scholar 

  • Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res 107(D10):4089. doi:10.1029/2000JD000286

    Article  Google Scholar 

  • Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8(5):1261–1283

    Article  Google Scholar 

  • Tedesco M, Brodzik M, Armstrong R, Savoie M, Ramage J (2009) Pan arctic terrestrial snowmelt trends (1979–2008) from space-borne passive microwave data and correlation with the Arctic Oscillation. Geophys Res Lett 36:L21402. doi:10.1029/2009GL039672

    Article  Google Scholar 

  • Tian Y, Zhang Y, Knyazikhin Y, Myneni RB, Running SW (2000) Prototyping of MODIS LAI/FPAR algorithm with LASUR and landsat data. IEEE Trans GeoSci Remote Sens 38(5):2387–2401

    Article  Google Scholar 

  • Vehvilainen B (1992) Snow cover models in operational watershed forecasting, National Board of Waters and the Environmental, Finland. Publications of Water and Environmental Research Institute, 112 pp

  • Verbyla B (2008) The greening and browning of Alaska based on 1982–2003 satellite data. Glob Ecol Biogeogr 17:547–555. doi:10.1111/j.1466-8238.2008.00396.x

    Article  Google Scholar 

  • Vorosmarty CJ, Peterson BJ, Rastetter EB, Steudler PA (1989) Continental scale models of water balance and fluvial transport: an application to South America. Glob Biogeochem Cycles 3(3):241–265

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Water Resour Res 39:8. doi:10.1029/2002WR001642

    Google Scholar 

  • Zhuang Q, Romanovsky VE, McGuire AD (2001) Incorporation of a permafrost model into a large-scale ecosystem model: evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics. J Geophys Res 106:33649–33670. doi:10.1029/2001JD900151

    Article  Google Scholar 

  • Zhuang Q, McGuire AD, O’Neill KP, Harden JW, Romanovsky VE, Yarie J (2002) Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J Geophys Res 108(D1):8147. doi:10.1029/2001JD001244

    Article  Google Scholar 

  • Zhuang Q, McGuire AD, Mellilo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the northern hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus 55B:751–776

    Google Scholar 

  • Zhuang Q, Mellio JM, Kicklighter DW, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Glob Biogeochem Cycles 18:GB3010. doi:10.1029/2004GB002239

    Article  Google Scholar 

  • Zhuang Q, Melillo JM, McGuire AD, Kicklighter DW, Prinn RG, Steudler PA, Felzer RS, Hu S (2007) Net emissions of CH4 and CO2 in alaska: implications for the region’s greenhouse gas budget. Ecol Apps 17(1):203–212

    Article  Google Scholar 

  • Zimov SA, Schuur EAG, Chapin FS III (2006) Climate change: permafrost and the global carbon budget. Science 312(5780):1612–1613. doi:10.1126/science.1128908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyun Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, J., Zhuang, Q. Modeling soil thermal and hydrological dynamics and changes of growing season in Alaskan terrestrial ecosystems. Climatic Change 107, 481–510 (2011). https://doi.org/10.1007/s10584-010-9988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9988-1

Keywords

Navigation