Skip to main content

Advertisement

Log in

Genome-wide assessment of recurrent genomic imbalances in canine leukemia identifies evolutionarily conserved regions for subtype differentiation

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Leukemia in dogs is a heterogeneous disease with survival ranging from days to years, depending on the subtype. Strides have been made in both human and canine leukemia to improve classification and understanding of pathogenesis through immunophenotyping, yet classification and choosing appropriate therapy remains challenging. In this study, we assessed 123 cases of canine leukemia (28 ALLs, 24 AMLs, 25 B-CLLs, and 46 T-CLLs) using high-resolution oligonucleotide array comparative genomic hybridization (oaCGH) to detect DNA copy number alterations (CNAs). For the first time, such data were used to identify recurrent CNAs and inclusive genes that may be potential drivers of subtype-specific pathogenesis. We performed predictive modeling to identify CNAs that could reliably differentiate acute subtypes (ALL vs. AML) and chronic subtypes (B-CLL vs. T-CLL) and used this model to differentiate cases with up to 83.3 and 95.8 % precision, respectively, based on CNAs at only one to three genomic regions. In addition, CGH datasets for canine and human leukemia were compared to reveal evolutionarily conserved copy number changes between species, including the shared gain of HSA 21q in ALL and ∼25 Mb of shared gain of HSA 12 and loss of HSA 13q14 in CLL. These findings support the use of canine leukemia as a relevant in vivo model for human leukemia and justify the need to further explore the conserved genomic regions of interest for their clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

BAC:

Bacterial artificial chromosome

CFA:

Canis familiaris

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

CMML:

Chronic myelomonocytic leukemia

CMoL:

Chronic monocytic leukemia

CNA:

Copy number aberration

CNV:

Copy number variant

FISH:

Fluorescence in situ hybridization

GISTIC:

Genomic Identification of Significant Targets in Cancer

HSA:

Homo sapiens

LSA:

Lymphosarcoma

oaCGH:

Oligonucleotide array comparative genomic hybridization

SNP:

Single nucleotide polymorphism

TZL:

T zone lymphoma

WBC:

White blood cell

References

  • Adam F, Villiers E, Watson S, Coyne K, Blackwood L (2009) Clinical pathological and epidemiological assessment of morphologically and immunologically confirmed canine leukaemia. Vet Comp Oncol 7(3):181–195

    Article  CAS  PubMed  Google Scholar 

  • Angstadt AY, Thayanithy V, Subramanian S, Modiano JF, Breen M (2012) A genome-wide approach to comparative oncology: high-resolution oligonucleotide aCGH of canine and human osteosarcoma pinpoints shared microaberrations. Cancer Genet 205(11):572–587

    Article  CAS  PubMed  Google Scholar 

  • Argiropoulos B, Yung E, Humphries RK (2007) Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev 21(22):2845–2849

    Article  CAS  PubMed  Google Scholar 

  • Avery A (2009) Molecular diagnostics of hematologic malignancies. Top Companion Anim Med 24(3):144–150

    Article  PubMed  Google Scholar 

  • Baldus CD (2004) Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: amplification discloses overexpression of APP, ETS2, and ERG genes. Proc Natl Acad Sci 101(11):3915–3920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baldus CD, Burmeister T, Martus P et al (2006) High expression of the ETS transcription factor ERG predicts adverse outcome in acute T-lymphoblastic leukemia in adults. J Clin Oncol 24(29):4714–4720

    Article  CAS  PubMed  Google Scholar 

  • Barth TF, Martin-Subero JI, Joos S et al (2003) Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 101(9):3681–3686

    Article  CAS  PubMed  Google Scholar 

  • Beroukhim R, Getz G, Nghiemphu L et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci 104(50):20007–20012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beroukhim R, Mermel CH, Porter D et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breen M, Hitte C, Lorentzen TD et al (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5(1):65

    Article  PubMed Central  PubMed  Google Scholar 

  • Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—man and his best friend share more than companionship. Chromosom Res 16(1):145–154

    Article  CAS  Google Scholar 

  • Bruns HA, Kaplan MH (2006) The role of constitutively active Stat6 in leukemia and lymphoma. Crit Rev Oncol/Hematol 57(3):245–253

    Article  Google Scholar 

  • Burnett R, Vernau W, Modiano J et al (2003) Diagnosis of canine lymphoid neoplasia using clonal rearrangements of antigen receptor genes. Vet Pathol 40(1):32–41

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research Network (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074

    Article  Google Scholar 

  • Carramusa L, Contino F, Ferro A et al (2007) The PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. J Cell Physiol 213(2):511–518

    Article  CAS  PubMed  Google Scholar 

  • Chapiro E, Leporrier N, Radford-Weiss I et al (2010) Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. Leuk Res 34(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Comazzi S, Gelain ME, Martini V et al (2011) Immunophenotype predicts survival time in dogs with chronic lymphocytic leukemia. J Vet Intern Med 21(1):100–106

    Article  Google Scholar 

  • Cruz C, Milner R, Alleman A et al (2011) BCR-ABL translocation in a dog with chronic monocytic leukemia. Vet Clin Pathol 40(1):40–47

    Article  Google Scholar 

  • Culver S, Ito D, Borst L et al (2013) Molecular characterization of canine BCR-ABL-positive chronic myelomonocytic leukemia before and after chemotherapy. Vet Clin Pathol 42(3):314–322

    Article  PubMed Central  PubMed  Google Scholar 

  • Eisele L, Prinz R, Klein-Hitpass L et al (2009) Combined PER2 and CRY1 expression predicts outcome in chronic lymphocytic leukemia. Eur J Haematol 83(4):320–327

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo JF, Culver S, Behling-Kelly E, Breen M, Friedrichs KR (2012) Acute myeloblastic leukemia with associated BCR-ABL translocation in a dog. Vet Clin Pathol 41(3):362–368

    Article  PubMed Central  PubMed  Google Scholar 

  • Flood-Knapik K, Durham A, Gregor T et al (2013) Clinical, histopathological and immunohistochemical characterization of canine indolent lymphoma. Vet Comp Oncol 11(4):272–286

    Article  CAS  PubMed  Google Scholar 

  • Flynn JMM, Andritsos LA, Jones JA et al (2013) Dinaciclib (SCH 727965) is a novel cyclin-dependent kinase (CDK) inhibitor that exhibits activity in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood 122(21):871

    Google Scholar 

  • Fonseca R, Van Wier S, Chng W et al (2006) Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia 20(11):2034–2040

    Article  CAS  PubMed  Google Scholar 

  • Forestier E, Izraeli S, Beverloo B et al (2008) Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood 111(3):1575–1583

    Article  CAS  PubMed  Google Scholar 

  • Friedman AD (2009) Cell cycle and developmental control of hematopoiesis by Runx1. J Cell Physiol 219(3):520–524

    Article  CAS  PubMed  Google Scholar 

  • Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Godbersen C, Agarwal VR, Paiva C, Brown JR, Danilov AV (2013) A novel cyclin dependent kinase inhibitor P1446A induces apoptosis of chronic lymphocytic leukemia B cells. Blood 122(21):1636

    Google Scholar 

  • Gryshchenko I, Hofbauer S, Stoecher M et al (2008) MDM2 SNP309 is associated with poor outcome in B-cell chronic lymphocytic leukemia. J Clin Oncol 26(14):2252–2257

    Article  CAS  PubMed  Google Scholar 

  • Gunnarsson R, Mansouri L, Isaksson A et al (2011) Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica 96(8):1161–1169

    Article  PubMed Central  PubMed  Google Scholar 

  • Hedan B, Thomas R, Motsinger-Reif A et al (2011) Molecular cytogenetic characterization of canine histiocytic sarcoma: a spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior. BMC Cancer 11(1):201

    Article  PubMed Central  PubMed  Google Scholar 

  • John LB, Ward AC (2011) The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol 48(9–10):1272–1278

    Article  CAS  PubMed  Google Scholar 

  • Juopperi T, Bienzle D, Bernreuter D et al (2011) Prognostic markers for myeloid neoplasms. Vet Pathol 48(1):182

    Article  CAS  PubMed  Google Scholar 

  • Kay NE, Eckel-Passow JE, Braggio E et al (2010) Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genet Cytogenet 203(2):161–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein U, Lia M, Crespo M et al (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17(1):28–40

    Article  CAS  PubMed  Google Scholar 

  • Korz C, Pscherer A, Benner A et al (2002) Evidence for distinct pathomechanisms in B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative expression analysis of cell cycle and apoptosis-associated genes. Blood 99(12):4554–4561

    Article  CAS  PubMed  Google Scholar 

  • Kuiper R, Schoenmakers E, Van Reijmersdal S et al (2007) High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21(6):1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Kyoda K, Nakamura S, Matano S, Ohtake S, Matsuda T (1997) Prognostic significance of immunoglobulin heavy chain gene rearrangement in patients with acute myelogenous leukemia. Leukemia 11(6):803–806

    Article  CAS  PubMed  Google Scholar 

  • Lam K, Zhang D-E (2012) RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci J Virt Libr 17:1120

    Article  CAS  Google Scholar 

  • Levine RL (2013) Molecular pathogenesis of AML: translating insights to the clinic. Best Pract Res Clin Haematol 26(3):245–248

    Article  CAS  PubMed  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819

    Article  CAS  PubMed  Google Scholar 

  • Logan AC, Vashi N, Faham M et al (2014) Immunoglobulin and T-cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplant relapse and survival. Biol Blood Marrow Transplant 20(9):1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Marcucci G, Maharry K, Whitman SP et al (2007) High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 25(22):3337–3343

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Goorha S, Radtke I et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764

    Article  CAS  PubMed  Google Scholar 

  • Nicholas TJ, Baker C, Eichler EE, Akey JM (2011) A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog. BMC Genomics 12(1):414

    Article  PubMed Central  PubMed  Google Scholar 

  • Nowell P, Hungerford D (1961) Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst 27:1013

    CAS  PubMed  Google Scholar 

  • Olshen AB, Venkatraman E, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4):557–572

    Article  PubMed  Google Scholar 

  • Parkin B, Erba H, Ouillette P et al (2010) Acquired genomic copy number aberrations and survival in adult acute myelogenous leukemia. Blood 116(23):4958–4967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pede V, Rombout A, Vermeire J et al (2013) Expression of ZAP70 in chronic lymphocytic leukaemia activates NF-κB signalling. Br J Haematol 163(5):621–630

    Article  CAS  PubMed  Google Scholar 

  • Pérez ML, Culver S, Owen JL et al (2013) Partial cytogenetic response with toceranib and prednisone treatment in a young dog with chronic monocytic leukemia. Anti-Cancer Drugs 24(10):1098–1103

    Article  PubMed  Google Scholar 

  • Poorman K, Borst L, Moroff S, Roy S, Labelle P, Motsinger-Reif A, Breen M (2015) Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization. Chromosom Res 23:171–186

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Radtke I, Mullighan CG, Ishii M et al (2009) Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci 106(31):12944–12949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rozovskaia T, Feinstein E, Mor O et al (2001) Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4 : 11) abnormality. Oncogene 20(7):874

    Article  CAS  PubMed  Google Scholar 

  • Schmetzer HM, Braun S, Wiesner D et al (2000) Gene rearrangements in bone marrow cells of patients with acute myelogenous leukemia. Acta Haematol 103(3):125–134

    Article  CAS  PubMed  Google Scholar 

  • Seelig D, Avery P, Webb T et al (2014) Canine T-zone lymphoma: unique immunophenotypic features, outcome, and population characteristics. J Vet Intern Med 28(3):878–886

    Article  CAS  PubMed  Google Scholar 

  • Shapiro SG, Raghunath S, Williams C, Motsinger-Reif A, Cullen JM, Liu T, Albertson D, Ruvolo M, Bergstrom Lucas A, Jin J, Knapp D, Schiffman JD and Breen M (2015) Canine urothelial carcinoma: genomically aberrant and comparatively relevant. Chromosom Res 23:311–331

  • Strefford JC (2006) Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci 103(21):8167–8172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suela J, Álvarez S, Cifuentes F et al (2007) DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups. Leukemia 21(6):1224–1231

    Article  CAS  PubMed  Google Scholar 

  • Suter S, Small G, Seiser E et al (2011) FLT3 mutations in canine acute lymphocytic leukemia. BMC Cancer 11(1):38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki A, Iida S, Kato-Uranishi M et al (2005) ARK5 is transcriptionally regulated by the large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma: ARK5 as a new molecular determinant of malignant multiple myeloma. Oncogene 24(46):6936–6944

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow S, Campo E, Harris NL (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, France

    Google Scholar 

  • Szczepański T, Pongers-Willemse M, Langerak A and Van Dongen J (1999) Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Mechanisms of B cell neoplasia 1998, Springer: 205–215

  • Tang J, Le S, Sun L et al (2010) Copy number abnormalities in sporadic canine colorectal cancers. Genome Res 20(3):341–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas R, Duke SE, Karlsson EK et al (2008) A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet Genome Res 122(2):110–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas R, Duke SE, Wang HJ et al (2009) ‘Putting our heads together’: insights into genomic conservation between human and canine intracranial tumors. J Neuro-Oncol 94(3):333–349

    Article  CAS  Google Scholar 

  • Thomas R, Seiser EL, Motsinger-Reif A et al (2011) Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin’s lymphomas. Leuk Lymphoma 52(7):1321–1335

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas R, Borst L, Rotroff D et al (2014) Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma. Chromosome Res 22(3):305–319

    Article  CAS  PubMed  Google Scholar 

  • Tong W-G, Chen R, Plunkett W et al (2010) Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J Clin Oncol 28(18):3015–3022

    Article  CAS  PubMed  Google Scholar 

  • Usher S, Radford A, Villiers E, Blackwood L (2009) RAS, FLT3, and C-KIT mutations in immunophenotyped canine leukemias. Exp Hematol 37(1):65–77

    Article  CAS  PubMed  Google Scholar 

  • Vernau W, Moore P (1999) An immunophenotypic study of canine leukemias and preliminary assessment of clonality by polymerase chain reaction. Vet Immunol Immunopathol 69(2–4):145–164

    Article  CAS  PubMed  Google Scholar 

  • Villiers E, Baines S, Law AM, Mallows V (2006) Identification of acute myeloid leukemia in dogs using flow cytometry with myeloperoxidase, MAC387, and a canine neutrophil-specific antibody. Vet Clin Pathol 35(1):55–71

    Article  PubMed  Google Scholar 

  • Weiss DJ, Wardrop KJ (eds) (2011) Schalm’s veterinary hematology. Wiley, Ames

    Google Scholar 

  • Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150(2):264–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkerson MJ (2012) Principles and applications of flow cytometry and cell sorting in companion animal medicine. Vet Clin N Am Small Anim Pract 42(1):53–71

    Article  Google Scholar 

  • Williams M, Avery A, Lana S et al (2008) Canine lymphoproliferative disease characterized by lymphocytosis: immunophenotypic markers of prognosis. J Vet Intern Med 22(3):596–601

    Article  CAS  PubMed  Google Scholar 

  • Winkler D, Schneider C, Kröber A et al (2005) Protein expression analysis of chromosome 12 candidate genes in chronic lymphocytic leukemia (CLL). Leukemia 19(7):1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Withrow SJ, Vail DM, Page RL (2013) Withrow & MacEwen’s small animal clinical oncology. Elsevier Saunders, St. Louis

    Google Scholar 

  • Wong P, Iwasaki M, Somervaille TC, So CWE, Cleary ML (2007) Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 21(21):2762–2774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded largely by a grant from the AKC Canine Health Foundation (#01843 awarded to MB), with additional support from an Ontario Veterinary College Pet Trust (awarded to DB, MB) and the NCSU Cancer Genomics Fund (MB). We gratefully acknowledge additional support from the Skippy Frank Fund for Life Sciences and Translational Research/ Rockefeller Philanthropy Advisors (awarded to MB/JS). SCR was supported in part by an NCSU Comparative Biomedical Science DVM-PhD training fellowship and NIH T35 training grant. We thank Jaime Modiano for providing some of the case materials, Rachael Thomas for assistance in recoding the canine data into “virtual” human data, and Siddharth Roy for valuable contributions toward calculating the shared regions for the predictive modeling feature selection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Breen.

Additional information

Responsible Editor: Conly Rieder

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 31 kb)

ESM 2

(XLS 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roode, S.C., Rotroff, D., Avery, A.C. et al. Genome-wide assessment of recurrent genomic imbalances in canine leukemia identifies evolutionarily conserved regions for subtype differentiation. Chromosome Res 23, 681–708 (2015). https://doi.org/10.1007/s10577-015-9475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-015-9475-7

Keywords

Navigation