Skip to main content
Log in

Nanosecond Electric Pulses: A Novel Stimulus for Triggering Ca2+ Influx into Chromaffin Cells Via Voltage-Gated Ca2+ Channels

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Exposing bovine chromaffin cells to a single 5 ns, high-voltage (5 MV/m) electric pulse stimulates Ca2+ entry into the cells via L-type voltage-gated Ca2+ channels (VGCC), resulting in the release of catecholamine. In this study, fluorescence imaging was used to monitor nanosecond pulse-induced effects on intracellular Ca2+ level ([Ca2+]i) to investigate the contribution of other types of VGCCs expressed in these cells in mediating Ca2+ entry. ω-Conotoxin GVIA and ω-agatoxin IVA, antagonists of N-type and P/Q-type VGCCs, respectively, reduced the magnitude of the rise in [Ca2+]i elicited by a 5 ns pulse. ω-conotoxin MVIIC, which blocks N- and P/Q-type VGCCs, had a similar effect. Blocking L-, N-, and P\Q-type channels simultaneously with a cocktail of VGCC inhibitors abolished the pulse-induced [Ca2+]i response of the cells, suggesting Ca2+ influx occurs only via VGCCs. Lowering extracellular K+ concentration from 5 to 2 mM or pulsing cells in Na+-free medium suppressed the pulse-induced rise in [Ca2+]i in the majority of cells. Thus, both membrane potential and Na+ entry appear to play a role in the mechanism by which nanoelectropulses evoke Ca2+ influx. However, activation of voltage-gated Na+ channels (VGSC) is not involved since tetrodotoxin (TTX) failed to block the pulse-induced rise in [Ca2+]i. These findings demonstrate that a single electric pulse of only 5 ns duration serves as a novel stimulus to open multiple types of VGCCs in chromaffin cells in a manner involving Na+ transport across the plasma membrane. Whether Na+ transport occurs via non-selective cation channels and/or through lipid nanopores remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

VGCC:

Voltage-gated Ca2+ channel

VGSC:

Voltage-gated Na+ channel

TTX:

Tetrodotoxin

BSS:

Balanced salt solution

References

  • Albillos A, García AG, Olivera B, Gandía L (1996) Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations. Pflügers Arch 432:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367:72–76

    Article  CAS  PubMed  Google Scholar 

  • Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee P, Vernier PT, Chatterjee I, Craviso GL (2009) Single nanosecond electric pulse-induced influx of calcium into adrenal chromaffin cells requires extracellular sodium. 31st Annual Bioelectromagnetics Society meeting, Davos, Switzerland

  • Cheek TR, Thorn P (2006) A constitutively active nonselective cation conductance underlies resting Ca2+ influx and secretion in bovine adrenal chromaffin cells. Cell Calcium 40:309–318

    Article  CAS  PubMed  Google Scholar 

  • Craviso GL (2004) Generation of functionally competent single bovine adrenal chromaffin cells from cell aggregates using the neutral protease dispase. J Neurosci Methods 137:275–281

    Article  CAS  PubMed  Google Scholar 

  • Craviso GL, Chatterjee P, Maalouf G, Cerjanic A, Yoon J, Chatterjee I, Vernier PT (2009) Nanosecond electric pulse-induced increase in intracellular calcium in adrenal chromaffin cells triggers calcium-dependent catecholamine release. IEEE Trans Dielectr Electr Insul 16:1294–1301

    Article  CAS  Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and their sensitivity to acetylcholine. J Physiol 331:577–597

    CAS  PubMed  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  CAS  PubMed  Google Scholar 

  • Friedman JE, Lelkes PI, Lavie E, Rosenheck K, Schneeweiss F, Schneider AS (1985) Membrane potential and catecholamine secretion by bovine adrenal chromaffin cells: use of tetraphenylphosphonium distribution and carbocyanine dye fluorescence. J Neurochem 44:1391–1402

    Article  CAS  PubMed  Google Scholar 

  • García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  PubMed  Google Scholar 

  • García-Sancho J, Verkhratsky A (2008) Cytoplasmic organelles determine complexity and specificity of calcium signalling in adrenal chromaffin cells. Acta Physiol 192:263–271

    Article  Google Scholar 

  • Hassan N, Chatterjee I, Publicover NG, Craviso GL (2002) Mapping membrane potential perturbations of chromaffin cells exposed to electric fields. IEEE Trans Plasma Sci 30:1516–1524

    Article  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Kuthi A, Gabrielsson P, Behrend M, Vernier PT, Gundersen MA (2005) Nanosecond pulse generator using fast recovery diodes for cell electromanipulation. IEEE Trans Plasma Sci 33:1192–1197

    Article  Google Scholar 

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36

    Article  CAS  PubMed  Google Scholar 

  • López MG, Artalejo AR, García AG, Neher E, García-Sancho J (1995) Veratridine-induced oscillations of cytosolic calcium and membrane potential in bovine chromaffin cells. J Physiol 482:15–27

    PubMed  Google Scholar 

  • Napotnik TB, Rebersek M, Kotnik T, Lebrasseur E, Cabodevila G, Miklavcic D (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413

    Article  PubMed  Google Scholar 

  • Nassar-Gentina V, Pollard HB, Rojas E (1988) Electrical activity in chromaffin cells of intact mouse adrenal gland. Am J Physiol (Cell Physiol 23) 254:C675–C683

    CAS  Google Scholar 

  • O’Farrell M, Marley PD (1999) Different contributions of voltage-sensitive Ca2+ channels to histamine-induced catecholamine release and tyrosine hydroxylase activation in bovine adrenal chromaffin cells. Cell Calcium 25:209–217

    Article  PubMed  Google Scholar 

  • Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007a) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  CAS  PubMed  Google Scholar 

  • Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH (2007b) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118

    Article  CAS  PubMed  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186

    Article  CAS  PubMed  Google Scholar 

  • SantoDomingo J, Vay L, Camacho M, Hernández-SanMiguel E, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J (2008) Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 28:1265–1274

    Article  PubMed  Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  CAS  PubMed  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  CAS  PubMed  Google Scholar 

  • Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    Article  CAS  PubMed  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10–22

    Article  PubMed  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  CAS  PubMed  Google Scholar 

  • Vernier PT, Sun Y, Chen M-T, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37–52

    Article  PubMed  Google Scholar 

  • Vernier PT, Sun Y, Chen M-T, Gundersen MA, Craviso GL (2008) Nanosecond electric pulse-induced calcium entry into chromaffin cells. Bioelectrochemistry 73:1–4

    Article  CAS  PubMed  Google Scholar 

  • Waymire JC, Bennett WF, Boehme R, Hankins L, Gilmer-Waymire K, Haycock JW (1983) Bovine adrenal chromaffin cells: high-yield purification and viability in suspension culture. J Neurosci Methods 7:329–351

    Article  CAS  PubMed  Google Scholar 

  • White JA, Blackmore PF, Schoenbach KH, Beebe SJ (2004) Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem 279:22964–22972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Karla Bee for help with data analyses, Tim Lindgren for technical and engineering support, and Dr. Normand Leblanc for valuable discussions. We also gratefully recognize Dr. Martin Gundersen for his intellectual and material contributions to this work, and Dr. Andras Kuthi for pulse generator design. This work was made possible by support from the Air Force Office of Scientific Research (AFOSR) Grant FA9550-07-1-0592 to G.L.C. and I.C. P.T.V. is supported by AFOSR and MOSIS, Information Sciences Institute, Viterbi School of Engineering, University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gale L. Craviso.

Additional information

A commentary to this article can be found at doi:10.1007/s10571-010-9611-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craviso, G.L., Choe, S., Chatterjee, P. et al. Nanosecond Electric Pulses: A Novel Stimulus for Triggering Ca2+ Influx into Chromaffin Cells Via Voltage-Gated Ca2+ Channels. Cell Mol Neurobiol 30, 1259–1265 (2010). https://doi.org/10.1007/s10571-010-9573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9573-1

Keywords

Navigation