Skip to main content
Log in

Membrane Organization and Function of the Serotonin1A Receptor

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

(1) The serotonin1A receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid–protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin1A receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin1A receptors, the ability to functionally solubilize the serotonin1A receptor, and the factors influencing the membrane organization of the serotonin1A receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin1A receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert PR, Zhou Q-Y, Van Tol HHM, Bunzow JR, Civelli O (1990) Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem 265:5825–5832

    PubMed  CAS  Google Scholar 

  • Arvidsson LE, Hacksell U, Nilsson JL, Hjorth S, Carlsson A, Lindberg P, Sanchez D, Wikstrom H (1981) 8-Hydroxy-2-(di-n-propylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist. J Med Chem 24:921–923

    PubMed  CAS  Google Scholar 

  • Azmitia EC (2001) Neuronal instability: implications for Rett’s syndrome. Brain Dev 23(Suppl.1):S1–S10

    PubMed  Google Scholar 

  • Banerjee P, Berry-Kravis E, Bonafede-Chhabra D, Dawson G (1993) Heterologous expression of the serotonin 5-HT1A receptor in neural and non-neural cell lines. Biochem Biophys Res Commun 192:104–110

    PubMed  CAS  Google Scholar 

  • Banerjee P, Joo JB, Buse JT, Dawson G (1995) Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids 77:65–78

    PubMed  CAS  Google Scholar 

  • Barrantes FJ (2004) Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Brain Res Rev 47:71–95

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    PubMed  CAS  Google Scholar 

  • Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57:1577–1592

    PubMed  CAS  Google Scholar 

  • Caliendo G, Santagada V, Perissutti E, Fiorino F (2005) Derivatives as 5HT1A receptor ligands-past and present. Curr Med Chem 12:1721–1753

    PubMed  CAS  Google Scholar 

  • Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    PubMed  CAS  Google Scholar 

  • Charest A, Wainer BH, Albert PR (1993) Cloning and differentiation-induced expression of a murine serotonin1A receptor in a septal cell line. J Neurosci 13:5164–5171

    PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Harikumar KG (1996) Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: implications in receptor solubilization. FEBS Lett 391:199–202

    PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Kalipatnapu S (2004) Serotonin1A receptor agonist acquires an antimalarial connection. J Biosci 29:1–2

    PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Paila YD (2007) Lipid-protein interactions, regulation and dysfunction of brain cholesterol. Biochem Biophys Res Commun 354:627–633

    PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Rukmini R, Mukherjee S (1996) Photophysics of a neurotransmitter: ionization and spectroscopic properties of serotonin. Biophys J 71:1952–1960

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Harikumar KG, Kalipatnapu S (2002) Solubilization of high affinity G-protein coupled serotonin1A receptors from bovine hippocampus using pre-micellar CHAPS at low concentration. Mol Membr Biol 19:211–220

    PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Jafurulla, Md, Kalipatnapu S (2004) Solubilization of serotonin1A receptors heterologously expressed in chinese hamster ovary cells. Cell Mol Neurobiol 24:293–300

    PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Jafurulla Md, Kalipatnapu S, Pucadyil TJ, Harikumar KG (2005) Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem Biophys Res Commun 327:1036–1041

    PubMed  CAS  Google Scholar 

  • Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    PubMed  CAS  Google Scholar 

  • Clapham DE (1996) The G-protein nanomachine. Nature 379:297–299

    PubMed  CAS  Google Scholar 

  • de Weerd WFC, Leeb-Lundberg LMF (1997) Bradykinin sequesters B2 bradykinin receptors and the receptor-coupled G subunits Gαq and Gαi in caveolae in DDT1 MF-2 smooth muscle cells. J Biol Chem 272:17858–17866

    PubMed  Google Scholar 

  • del Olmo E, López-Giménez JF, Vilaró MT, Mengod G, Palacios JM, Pazos A (1998) Early localization of mRNA coding for 5-HT1A receptors in human brain during development. Mol Brain Res 60:123–126

    PubMed  Google Scholar 

  • Edidin M (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol 11:4924–4926

    Google Scholar 

  • Edidin M (2003) Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol 4:414–418

    PubMed  CAS  Google Scholar 

  • Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ (1988) The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335:358–360

    PubMed  CAS  Google Scholar 

  • Field KA, Holowka D, Baird B (1995) FcεRI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci USA 92:9201–9205

    PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    PubMed  CAS  Google Scholar 

  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    PubMed  CAS  Google Scholar 

  • Gaus K, Rodriguez M, Ruberu KR, Gelissen I, Sloane TM, Kritharides L, Jessup W (2005) Domain-specific lipid distribution in macrophage plasma membranes. J Lipid Res 46:1526–1538

    PubMed  CAS  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113

    PubMed  CAS  Google Scholar 

  • Gether U, Kobilka BK (1998) G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem 273:17979–17982

    PubMed  CAS  Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142

    PubMed  CAS  Google Scholar 

  • Hao M, Mukherjee S, Maxfield FR (2001) Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc Natl Acad Sci USA 98:13072–13077

    PubMed  CAS  Google Scholar 

  • Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    PubMed  CAS  Google Scholar 

  • Harikumar KG, Chattopadhyay A. (1998a). Metal ion and guanine nucleotide modulations of agonist interaction in G-protein-coupled serotonin1A receptors from bovine hippocampus. Cell Mol Neurobiol 18:535–553

    PubMed  CAS  Google Scholar 

  • Harikumar KG, Chattopadhyay A. (1998b). Modulation of agonist and antagonist interactions in serotonin1A receptors by alcohols. FEBS Lett 438:96–100

    PubMed  CAS  Google Scholar 

  • Harikumar KG, Chattopadhyay A (1999) Differential discrimination of G-protein coupling of serotonin1A receptors from bovine hippocampus by an agonist and an antagonist. FEBS Lett 457:389–392

    PubMed  CAS  Google Scholar 

  • Harikumar KG, Chattopadhyay A (2000) Effect of alcohols on G-protein coupling of serotonin1A receptors from bovine hippocampus. Brain Res Bull 52:597–601

    PubMed  CAS  Google Scholar 

  • Harikumar KG, Chattopadhyay A (2001) Modulation of antagonist binding to serotonin1A receptors from bovine hippocampus by metal ions. Cell Mol Neurobiol 21:453–464

    PubMed  CAS  Google Scholar 

  • Harikumar KG, John PT, Chattopadhyay A (2000) Role of disulfides and sulfhydryl groups in agonist and antagonist binding in serotonin1A receptors from bovine hippocampus. Cell Mol Neurobiol 20:665–681

    PubMed  CAS  Google Scholar 

  • Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    PubMed  CAS  Google Scholar 

  • Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RG, Mumby SM (1997) Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell 8:2365–2378

    PubMed  CAS  Google Scholar 

  • Hur E-M, Kim K-T (2002) G protein-coupled receptor signalling and cross-talk: achieving rapidity and specificity. Cell Signal 14:397–405

    PubMed  CAS  Google Scholar 

  • Insel PA, Tang CM, Hahntow I, Michel MC (2007) Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim Biophys Acta 1768:994–1005

    PubMed  CAS  Google Scholar 

  • Jacobson K, Sheets ED, Simson R (1995) Revisiting the fluid mosaic model of membranes. Science 268:1441–1442

    PubMed  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    PubMed  CAS  Google Scholar 

  • Javadekar-Subhedar V, Chattopadhyay A (2004) Temperature-dependent interaction of the bovine hippocampal serotonin1A receptor with G-proteins. Mol Membr Biol 21:119–123

    PubMed  CAS  Google Scholar 

  • Jones MB, Garrison JC (1999) Instability of the G-protein β5 subunit in detergent. Anal Biochem 268:126–133

    PubMed  CAS  Google Scholar 

  • Jones OT, Eubanks JH, Earnest JP, McNamee MG (1988) A minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor. Biochemistry 27:3733–3742

    PubMed  CAS  Google Scholar 

  • Julius D (1998) Serotonin receptor knockouts: a moody subject. Proc Natl Acad Sci USA 95:15153–15154

    PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Chattopadhyay A (2004a) Interaction of serotonin1A receptors from bovine hippocampus with tertiary amine local anesthetics. Cell Mol Neurobiol 24:403–422

    PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Chattopadhyay A (2004b) A GFP fluorescence-based approach to determine detergent insolubility of the human serotonin1A receptor. FEBS Lett 576:455–460

    PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Chattopadhyay A (2005a) Membrane protein solubilization: Recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life 57:505–512

    Article  PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Chattopadhyay A (2005b) Membrane organization of the human serotonin1A receptor monitored by detergent insolubility using GFP fluorescence. Mol Membr Biol 22:539–547

    PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Chattopadhyay A (2007) Membrane organization of the serotonin1A receptor monitored by a detergent-free approach. Cell Mol Neurobiol 27:463–474

    PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Jafurulla M, Chandrasekaran N, Chattopadhyay A (2004a) Effect of Mg2+ on guanine nucleotide sensitivity of ligand binding to serotonin1A receptors from bovine hippocampus. Biochem Biophys Res Commun 323:372–376

    PubMed  CAS  Google Scholar 

  • Kalipatnapu S, Pucadyil TJ, Harikumar KG, Chattopadhyay A (2004b) Ligand binding characteristics of the human serotonin1A receptor heterologously expressed in CHO cells. Biosci Rep 24:101–115

    PubMed  CAS  Google Scholar 

  • Klausner RD, Wolf DE (1980) Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry 19:6199–6203

    PubMed  CAS  Google Scholar 

  • Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987) An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329:75–79

    PubMed  CAS  Google Scholar 

  • Kung HF, Kung M-P, Clarke W, Maayani S, Zhuang Z-P (1994) A potential 5-HT1A receptor antagonist: p-MPPI. Life Sci 55:1459–1462

    PubMed  CAS  Google Scholar 

  • Kung M-P, Frederick D, Zhuang Z-P, Kung HF (1995) 4-(2′-Methoxy-phenyl)-1-[2′-(N-2′′-pyridinyl)-p-iodobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: in vitro binding and autoradiographic studies. J Pharmacol Exp Ther 272:429–437

    PubMed  CAS  Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    PubMed  CAS  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (2007) Seven transmembrane receptors – a brief personal retrospective. Biochim Biophys Acta 1768:748–755

    PubMed  CAS  Google Scholar 

  • Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, Ou X-M, Albert PR (2003) Impaired repression at a 5-hydroxytryptamine1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 23:8788–8799

    PubMed  CAS  Google Scholar 

  • Liscum L, Underwood KW (1995) Intracellular cholesterol transport and compartmentation. J Biol Chem 270:15443–15446

    PubMed  CAS  Google Scholar 

  • Liu Y, Engelman DM, Gerstein M (2002) Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol 3:research0054.1-0054.12

  • Luria A, Vegelyte-Avery V, Stith B, Tsvetkova NM, Wolkers WF, Crowe JH, Tablin F, Nuccitelli R (2002) Detergent-free domain isolated from Xenopus egg plasma membrane with properties similar to those of detergent-resistant membranes. Biochemistry 41:13189–13197

    PubMed  CAS  Google Scholar 

  • Macdonald JL, Pike LJ (2005) A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res 46:1061–1067

    PubMed  CAS  Google Scholar 

  • Mayor S, Maxfield FR (1995) Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol Biol Cell 6:929–944

    PubMed  CAS  Google Scholar 

  • Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147:S46–S55

    PubMed  CAS  Google Scholar 

  • Milligan G, Parenti M, Magee AI (1995) The dynamic role of palmitoylation in signal transduction. Trends Biochem Sci 20:181–187

    PubMed  CAS  Google Scholar 

  • Monneron A, d’Alayer J (1978) Isolation of plasma and nuclear membranes of thymocytes. I. Enzymatic composition and ultrastructure. J Cell Biol 77:211–231

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Chattopadhyay A (2005) Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. Biochim Biophys Acta 1714:43–55

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Maxfield FR (2004) Membrane domains. Annu Rev Cell Dev Biol 20:839–866

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Kalipatnapu S, Pucadyil TJ, Chattopadhyay A (2006) Monitoring the organization and dynamics of bovine hippocampal membranes utilizing differentially localized fluorescent probes. Mol Membr Biol 23:430–441

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Soe TT, Maxfield FR (1998) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144:1271–1284

    Google Scholar 

  • Nature reviews drug discovery GPCR questionnaire participants (2004) The state of GPCR research in 2004. Nat Rev Drug Discov 3:577–626

    Google Scholar 

  • Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB J 8:939–946

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Conte C, Chaput C, Verrièle L, Millan MJ (1997) Agonist and inverse agonist efficacy at human recombinant serotonin 5-HT1A receptors as a function of receptor:G-protein stoichiometry. Neuropharmacology 36:451–459

    PubMed  CAS  Google Scholar 

  • Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins -a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11–22

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276:42063–42069

    PubMed  CAS  Google Scholar 

  • Paila YD, Chattopadhyay A (2006) The human serotonin1A receptor expressed in neuronal cells: toward a native environment for neuronal receptors. Cell Mol Neurobiol 26:925–942

    PubMed  CAS  Google Scholar 

  • Paila YD, Pucadyil TJ, Chattopadhyay A (2005) The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1A receptor. Mol Membr Biol 22:241–249

    PubMed  CAS  Google Scholar 

  • Palacios JM, Waeber C, Hoyer D, Mengod G (1990) Distribution of serotonin receptors. Ann N Y Acad Sci 600:36–52

    PubMed  CAS  Google Scholar 

  • Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18

    PubMed  CAS  Google Scholar 

  • Papakostas GI, Öngür D, Iosifescu DV, Mischoulon D, Fava M (2004) Cholesterol in mood and anxiety disorders: review of the literature and new hypotheses. Eur Neuropsychopharmacol 14:135–142

    PubMed  CAS  Google Scholar 

  • Papoucheva E, Dumuis A, Sebben M, Richter DW, Ponimaskin EG (2004) The 5-hydroxytryptamine1A receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein. J Biol Chem 279:3280–3291

    PubMed  CAS  Google Scholar 

  • Pavlidis P, Ramaswami M, Tanouye MA (1994) The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell 79:23–33

    PubMed  CAS  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    PubMed  CAS  Google Scholar 

  • Pike LJ, Han X, Gross RW (2005) Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids: a shotgun lipidomics study. J Biol Chem 280:26796–26804

    PubMed  CAS  Google Scholar 

  • Pralle A, Keller P, Florin EL, Simons K, Horber JK (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1008

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2004a) Exploring detergent insolubility in bovine hippocampal membranes: a critical assessment of the requirement for cholesterol. Biochim Biophys Acta 1661:9–17

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2004b) Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2005) Cholesterol modulates the antagonist-binding function of hippocampal serotonin1A receptors. Biochim Biophys Acta 1714:35–42

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007a) Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol 23:49–53

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007b) Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin1A receptor in the plasma membrane of living cells. Biochim Biophys Acta 1768:655–668

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007c) The human serotonin1A receptor exhibits G-protein-dependent cell surface dynamics. Glycoconj J 24:25–31

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Shrivatsava S, Chattopadhyay A (2004a) The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochem Biophys Res Commun 320:557–562

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Kalipatnapu S, Harikumar KG, Rangaraj N, Karnik SS, Chattopadhyay A (2004b) G-protein-dependent cell surface dynamics of the human serotonin1A receptor tagged to yellow fluorescent protein. Biochemistry 43:15852–15862

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005a) The serotonin1A receptor: A representative member of the serotonin receptor family. Cell Mol Neurobiol 25:553–580

    PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Shrivastava S, Chattopadhyay A (2005b) Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 331:422–427

    PubMed  CAS  Google Scholar 

  • Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN (1999) The recombinant 5-HT1A receptor: G protein coupling and signaling pathways. Br J Pharmacol 127:1751–1764

    PubMed  CAS  Google Scholar 

  • Rukmini R, Rawat SS, Biswas SC, Chattopadhyay A (2001) Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys J 81:2122–2134

    PubMed  CAS  Google Scholar 

  • Rybin VO, Lisanti MP, Steinberg SF (2000) Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. J Biol Chem 275:41447–41457

    PubMed  CAS  Google Scholar 

  • Shvartsman DE, Kotler M, Tall RD, Roth MG, Henis YI (2003) Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. J Cell Biol 163:879–888

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726

    PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  • Singh JK, Chromy BA, Boyers MJ, Dawson G, Banerjee P (1996) Induction of the serotonin1A receptor in neuronal cells during prolonged stress and degeneration. J Neurochem 66:2361–2372

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Paila YD, Chattopadhyay A (2007) Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin1A receptor: Implications in SLOS. Biochem Biophys Res Commun 358:495–499

    PubMed  CAS  Google Scholar 

  • Smart EJ, Ying Y-S, Mineo C, Anderson RGW (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci USA 92:10104–10108

    PubMed  CAS  Google Scholar 

  • Song KS, Shengwen L, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271:9690–9697

    PubMed  CAS  Google Scholar 

  • Spink CH, Yeager MD, Feigenson GW (1990) Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes. Biochim Biophys Acta 1023:25–33

    PubMed  CAS  Google Scholar 

  • Toth M (2003) 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol 463:177–184

    PubMed  CAS  Google Scholar 

  • van der Goot FG, Harder T (2001) Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol 13:89–97

    PubMed  Google Scholar 

  • Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

    PubMed  CAS  Google Scholar 

  • Vrljic M, Nishimura SY, Moerner WE, McConnell HM (2005) Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J 88:334–347

    PubMed  CAS  Google Scholar 

  • Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Waterham HR, Wanders RJA (2000) Biochemical and genetic aspects of 7-dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome. Biochim Biophys Acta 1529:340–356

    PubMed  CAS  Google Scholar 

  • Xiao Z-L, Chen Q, Amaral J, Biancani P, Behar J (2000) Defect of receptor-G protein coupling in human gallbladder with cholesterol stones. Am J Physiol Gastrointest Liver Physiol 278:G251–G258

    PubMed  CAS  Google Scholar 

  • Zhang L, Salom D, He J, Okun A, Ballesteros J, Palczewski K, Li N (2005) Expression of functional G protein-coupled receptors in photoreceptors of transgenic Xenopus laevis. Biochemistry 44:14509–14518

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in A.C.’s laboratory was supported by the Council of Scientific and Industrial Research, Department of Biotechnology, Life Sciences Research Board, and the International Society for Neurochemistry. A.C. is an Honorary Faculty Member of the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore (India). Some of the work described in this article was carried out by former and present members of A.C.’s research group whose contributions are gratefully acknowledged. We thank members of the A.C. laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalipatnapu, S., Chattopadhyay, A. Membrane Organization and Function of the Serotonin1A Receptor. Cell Mol Neurobiol 27, 1097–1116 (2007). https://doi.org/10.1007/s10571-007-9189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9189-2

Keywords

Navigation