Skip to main content
Log in

Spatiotemporal Organization of Ras Signaling: Rasosomes and the Galectin Switch

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Ras signaling and oncogenesis depend on the dynamic interplay of Ras with distinctive plasma membrane (PM) microdomains and various intracellular compartments. Such interaction is dictated by individual elements in the carboxy-terminal domain of the Ras proteins, including a farnesyl isoprenoid group, sequences in the hypervariable region (hvr)-linker, and palmitoyl groups in H/N-Ras isoforms.

2. The farnesyl group acts as a specific recognition unit that interacts with prenyl-binding pockets in galectin-1 (Gal-1), galectin-3 (Gal-3), and cGMP phosphodiesterase δ. This interaction appears to contribute to the prolongation of Ras signals in the PM, the determination of Ras effector usage, and perhaps also the transport of cytoplasmic Ras. Gal-1 promotes H-Ras signaling to Raf at the expense of phosphoinositide 3-kinase (PI3-K) and Ral guanine nucleotide exchange factor (RalGEF), while galectin-3 promotes K-Ras signaling to both Raf and PI3-K.

3. The hvr-linker and the palmitates of H-Ras and N-Ras determine the micro- and macro-localizations of these proteins in the PM and in the Golgi, as well as in ‘rasosomes’, randomly moving nanoparticles that carry palmitoylated Ras proteins and their signal through the cytoplasm.

4. The dynamic compartmentalization of Ras proteins contributes to the spatial organization of Ras signaling, promotes redistribution of Ras, and provides an additional level of selectivity to the signal output of this regulatory GTPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

FRAP:

fluorescence recovery after photobleaching

G domain:

GTPase domain

Gal-1:

galectin-1

Gal-3:

galectin-3

GDIs:

guanine nucleotide-dissociation inhibitors

GFP:

green fluorescent protein

hvr:

hypervariable region

PI3-K:

phosphoinositide 3-kinase

PM:

plasma membrane

RalBD:

Ral-binding domain of Ral-binding protein 1

RasGAPs:

Ras GTPase-activating proteins

RalGEFs:

Ral guanine nucleotide exchange factors

RasGEFs:

Ras guanine nucleotide exchange factors

RBD:

Ras-binding domain of Raf-1

TIRF:

Total internal reflection fluorescence.

REFERENCES

  • Adamson, P., Paterson, H. F., and Hall, A. (1992). Intracellular localization of the P21rho proteins. J. Cell Biol. 119:617–627.

    Article  Google Scholar 

  • An, Y., Shao, Y., Alory, C., Matteson, J., Sakisaka, T., Chen, W., Gibbs, R. A., Wilson, I. A., and Balch, W. E. (2003). Geranylgeranyl switching regulates GDI-Rab GTPase recycling. Structure (Camb.) 11:347–357.

    Article  Google Scholar 

  • Baker, T. L., Zheng, H., Walker, J., Coloff, J. L., and Buss, J. E. (2003). Distinct rates of palmitate turnover on membrane-bound cellular and oncogenic H-ras. J. Biol. Chem. 278:19292–19300.

    Article  Google Scholar 

  • Barbacid, M. (1987). ras genes. Annu. Rev. Biochem. 56:779–827.

    Article  Google Scholar 

  • Bar-Sagi, D., and Hall, A. (2000). Ras and Rho GTPases: A family reunion. Cell 103:227–238.

    Article  Google Scholar 

  • Berzat, A. C., Buss, J. E., Chenette, E. J., Weinbaum, C. A., Shutes, A., Der, C. J., Minden, A., and Cox, A. D. (2005). Transforming activity of the Rho family GTPase, Wrch-1, a Wnt-regulated Cdc42 homolog, is dependent on a novel carboxyl-terminal palmitoylation motif. J. Biol. Chem. 280:33055–33065.

    Article  Google Scholar 

  • Bivona, T. G., and Philips, M. R. (2003). Ras pathway signaling on endomembranes. Curr. Opin. Cell Biol. 15:136–142.

    Article  Google Scholar 

  • Boguski, M. S., and McCormick, F. (1993). Proteins regulating Ras and its relatives. Nature 366:643–654.

    Article  Google Scholar 

  • Bos, J. L. (1995). p21ras: An oncoprotein functioning in growth factor-induced signal transduction. Eur. J. Cancer 31:1051–1054.

    Article  Google Scholar 

  • Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J. (1998). Increasing complexity of Ras signaling. Oncogene 17:1395–1413.

    Article  Google Scholar 

  • Casey, P. J., and Seabra, M. C. (1996). Protein prenyltransferases. J. Biol. Chem. 271:5289–5292.

    Article  Google Scholar 

  • Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E. (1989). p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. U.S.A. 86:8323–8327.

    Article  Google Scholar 

  • Chiu, V. K., Bivona, T., Hach, A., Sajous, J. B., Silletti, J., Wiener, H., Johnson, R. L., 2nd, Cox, A. D., and Philips, M. R. (2002). Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell. Biol. 4:343–350.

    Google Scholar 

  • Chiu, V. K., Silletti, J., Dinsell, V., Wiener, H., Loukeris, K., Ou, G., Philips, M. R., and Pillinger, M. H. (2004). Carboxyl methylation of Ras regulates membrane targeting and effector engagement. J. Biol. Chem. 279:7346–7352.

    Article  Google Scholar 

  • Chong, H., Vikis, H. G., and Guan, K. L. (2003). Mechanisms of regulating the Raf kinase family. Cell. Signal. 15:463–469.

    Article  Google Scholar 

  • Choy, E., Chiu, V. K., Silletti, J., Feoktistov, M., Morimoto, T., Michaelson, D., Ivanov, I. E., and Philips, M. R. (1999). Endomembrane trafficking of ras: The CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80.

    Article  Google Scholar 

  • Coleman, R. A., Rao, P., Fogelsong, R. J., and Bardes, E. S. (1992). 2-Bromopalmitoyl-CoA and 2-bromopalmitate: Promiscuous inhibitors of membrane-bound enzymes. Biochim. Biophys. Acta 1125:203–209.

    Google Scholar 

  • Corbett, K. D., and Alber, T. (2001). The many faces of Ras: Recognition of small GTP-binding proteins. Trends Biochem. Sci. 26:710–716.

    Article  Google Scholar 

  • Cox, A. D., and Der, C. J. (2003). The dark side of Ras: Regulation of apoptosis. Oncogene 22:8999–9006.

    Article  Google Scholar 

  • Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3:11–22.

    Article  Google Scholar 

  • Du, W., Lebowitz, P. F., and Prendergast, G. C. (1999). Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol. Cell. Biol. 19:1831–1840.

    Google Scholar 

  • Egozi, Y., Weisz, B., Gana-Weisz, M., Ben-Baruch, G., and Kloog, Y. (1999). Growth inhibition of ras-dependent tumors in nude mice by a potent ras-dislodging antagonist. Int. J. Cancer 80:911–918.

    Article  Google Scholar 

  • Elad-Sfadia, G., Haklai, R., Ballan, E., Gabius, H. J., and Kloog, Y. (2002). Galectin-1 augments Ras activation and diverts Ras signals to Raf-1 at the expense of phosphoinositide 3-kinase. J. Biol. Chem. 277:37169–37175.

    Article  Google Scholar 

  • Elad-Sfadia, G., Haklai, R., Balan, E., and Kloog, Y. (2004). Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J. Biol. Chem. 279:34922–34930.

    Article  Google Scholar 

  • Feig, L. A. (2003). Ral-GTPases: Approaching their 15 minutes of fame. Trends Cell Biol. 13:419–425.

    Article  Google Scholar 

  • Gana-Weisz, M., Halaschek-Wiener, J., Jansen, B., Elad, G., Haklai, R., and Kloog, Y. (2002). The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid chemosensitizes human tumor cells without causing resistance. Clin. Cancer Res. 8:555–565.

    Google Scholar 

  • Goodwin, J. S., Drake, K. R., Rogers, C., Wright, L., Lippincott-Schwartz, J., Philips, M. R., and Kenworthy, A. K. (2005). Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170:261–272.

    Article  Google Scholar 

  • Gutierrez, L., Magee, A. I., Marshall, C. J., and Hancock, J. F. (1989). Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J. 8:1093–1098.

    Google Scholar 

  • Hancock, J. F. (2003). Ras proteins: Different signals from different locations. Nat. Rev. Mol. Cell Biol. 4:373–384.

    Article  Google Scholar 

  • Hancock, J. F., Magee, A. I., Childs, J. E., and Marshall, C. J. (1989). All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 57:1167–1177.

    Article  Google Scholar 

  • Hancock, J. F., and Parton, R. G. (2005). Ras plasma membrane signalling platforms. Biochem. J. 389:1–11.

    Article  Google Scholar 

  • Hancock, J. F., Paterson, H., and Marshall, C. J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139.

    Article  Google Scholar 

  • Hanzal-Bayer, M., Renault, L., Roversi, P., Wittinghofer, A., and Hillig, R. C. (2002). The complex of Arl2-GTP and PDE delta: From structure to function. EMBO J. 21:2095–2106.

    Article  Google Scholar 

  • Hoffman, G. R., Nassar, N., and Cerione, R. A. (2000). Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100:345–356.

    Article  Google Scholar 

  • Hu, H., Bliss, J. M., Wang, Y., and Colicelli, J. (2005). RIN1 is an ABL tyrosine kinase activator and a regulator of epithelial-cell adhesion and migration. Curr. Biol. 15:815–823.

    Article  Google Scholar 

  • Jaumot, M., Yan, J., Clyde-Smith, J., Sluimer, J., and Hancock, J. F. (2002). The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 277:272–278.

    Article  Google Scholar 

  • Jiang, X., and Sorkin, A. (2002). Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol. Biol. Cell. 13:1522–1535.

    Article  Google Scholar 

  • Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J. (1992). Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. U.S.A. 89:6403–6407.

    Article  Google Scholar 

  • Kfir, S., Ehrlich, M., Goldshmid, A., Liu, X., Kloog, Y., and Henis, Y. I. (2005). Pathway- and expression level-dependent effects of oncogenic N-Ras: p27(Kip1) mislocalization by the Ral-GEF pathway and Erk-mediated interference with Smad signaling. Mol. Cell. Biol. 25:8239–8250.

    Article  Google Scholar 

  • Kloog, Y., and Cox, A. D. (2000). RAS inhibitors: Potential for cancer therapeutics. Mol. Med. Today 6:398–402.

    Article  Google Scholar 

  • Kloog, Y., and Cox, A. D. (2004). Prenyl-binding domains: Potential targets for Ras inhibitors and anti-cancer drugs. Semin. Cancer Biol. 14:253–261.

    Article  Google Scholar 

  • Kloog, Y., Cox, A. D., and Sinensky, M. (1999). Concepts in Ras-directed therapy. Expert Opin. Invest. Drugs 8:2121–2140.

    Article  Google Scholar 

  • Linder, M. E., and Deschenes, R. J. (2003). New insights into the mechanisms of protein palmitoylation. Biochemistry 42:4311–4320.

    Article  Google Scholar 

  • Lobo, S., Greentree, W. K., Linder, M. E., and Deschenes, R. J. (2002). Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277:41268–41273.

    Article  Google Scholar 

  • Lommerse, P. H., Snaar-Jagalska, B. E., Spaink, H. P., and Schmidt, T. (2005). Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J. Cell Sci. 118:1799–1809.

    Article  Google Scholar 

  • Lopez, I., Mak, E. C., Ding, J., Hamm, H. E., and Lomasney, J. W. (2001). A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J. Biol. Chem. 276:2758–2765.

    Article  Google Scholar 

  • Magee, A. I., Newman, C. M., Giannakouros, T., Hancock, J. F., Fawell, E., and Armstrong, J. (1992). Lipid modifications and function of the ras superfamily of proteins. Biochem. Soc. Trans. 20:497–499.

    Google Scholar 

  • Magee, A. I., and Seabra, M. C. (2003). Are prenyl groups on proteins sticky fingers or greasy handles? Biochem. J. 376:e3–e4.

    Article  Google Scholar 

  • Magee, T., and Seabra, M. C. (2005). Fatty acylation and prenylation of proteins: What's hot in fat. Curr. Opin. Cell Biol. 17:190–196.

    Article  Google Scholar 

  • Malumbres, M., and Barbacid, M. (2003). RAS oncogenes: The first 30 years. Nat. Rev. Cancer 3:459–465.

    Article  Google Scholar 

  • Marom, M., Haklai, R., Ben-Baruch, G., Marciano, D., Egozi, Y., and Kloog, Y. (1995). Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J. Biol. Chem. 270:22263–22270.

    Article  Google Scholar 

  • Marshall, C. J. (1993). Protein prenylation: A mediator of protein–protein interactions. Science 259:1865–1866.

    Article  Google Scholar 

  • Martincic, I., Peralta, M. E., and Ngsee, J. K. (1997). Isolation and characterization of a dual prenylated Rab and VAMP2 receptor. J. Biol. Chem. 272:26991–26998.

    Article  Google Scholar 

  • Matheny, S. A., Chen, C., Kortum, R. L., Razidlo, G. L., Lewis, R. E., and White, M. A. (2004). Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427:256–260.

    Article  Google Scholar 

  • Meder, D., and Simons, K. (2005). Cell biology. Ras on the roundabout. Science 307:1731–1733.

    Google Scholar 

  • Michaelson, D., Silletti, J., Murphy, G., D'Eustachio, P., Rush, M., and Philips, M. R. (2001). Differential localization of Rho GTPases in live cells: Regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152:111–126.

    Article  Google Scholar 

  • Minard, M. E., Kim, L. S., Price, J. E., and Gallick, G. E. (2004). The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res. Treat. 84:21–32.

    Article  Google Scholar 

  • Mitin, N., Rossman, K. L., and Der, C. J. (2005). Signaling interplay in Ras superfamily function. Curr. Biol. 15:R563–R574.

    Article  Google Scholar 

  • Murakoshi, H., Iino, R., Kobayashi, T., Fujiwara, T., Ohshima, C., Yoshimura, A., and Kusumi, A. (2004). Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl. Acad. Sci. U.S.A. 101:7317–7322.

    Article  Google Scholar 

  • Nancy, V., Callebaut, I., El Marjou, A., and de Gunzburg, J. (2002). The delta subunit of retinal rod cGMP phosphodiesterase regulates the membrane association of Ras and Rap GTPases. J. Biol. Chem. 277:15076–15084.

    Google Scholar 

  • Niv, H., Gutman, O., Henis, Y. I., and Kloog, Y. (1999). Membrane interactions of a constitutively active GFP-Ki-Ras 4B and their role in signaling. Evidence from lateral mobility studies. J. Biol. Chem. 274:1606–1613.

    Article  Google Scholar 

  • Niv, H., Gutman, O., Kloog, Y., and Henis, Y. I. (2002). Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157:865–872.

    Article  Google Scholar 

  • Ozaki, Y., Sasagawa, S., and Kuroda, S. (2005). Dynamic characteristics of transient responses. J. Biochem. (Tokyo) 137:659–663.

    Google Scholar 

  • Paz, A., Haklai, R., Elad-Sfadia, G., Ballan, E., and Kloog, Y. (2001). Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–7493.

    Article  Google Scholar 

  • Pfeffer, S. R. (2001). Rab GTPases: Specifying and deciphering organelle identity and function. Trends Cell Biol. 11:487–491.

    Article  Google Scholar 

  • Philips, M. R. (2005). Compartmentalized signalling of Ras. Biochem. Soc. Trans. 33:657–661.

    Article  Google Scholar 

  • Plowman, S. J., and Hancock, J. F. (2005). Ras signaling from plasma membrane and endomembrane microdomains. Biochim. Biophys. Acta 1746:274–283.

    Article  Google Scholar 

  • Praskova, M., Khoklatchev, A., Ortiz-Vega, S., and Avruch, J. (2004). Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J. 381:453–462.

    Article  Google Scholar 

  • Prior, I. A., Muncke, C., Parton, R. G., and Hancock, J. F. (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160:165–170.

    Article  Google Scholar 

  • Rocks, O., Peyker, A., Kahms, M., Verveer, P. J., Koerner, C., Lumbierres, M., Kuhlmann, J., Waldmann, H., Wittinghofer, A., and Bastiaens, P. I. (2005). An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752.

    Article  Google Scholar 

  • Rotblat, B., Niv, H., Andre, S., Kaltner, H., Gabius, H. J., and Kloog, Y. (2004a). Galectin-1(L11A) predicted from a computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-GTP. Cancer Res. 64:3112–3118.

    Article  Google Scholar 

  • Rotblat, B., Prior, I. A., Muncke, C., Parton, R. G., Kloog, Y., Henis, Y. I., and Hancock, J. F. (2004b). Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol. Cell. Biol. 24:6799–6810.

    Article  Google Scholar 

  • Rotblat, B., Yizhar, O., Haklai, R., Ashery, U., and Kloog, Y. (2006). Ras and its signals traverse the cell on randomly moving nanoparticles. Cancer Res. 66:1974–1981.

    Google Scholar 

  • Roy, S., Plowman, S., Rotblat, B., Prior, I. A., Muncke, C., Grainger, S., Parton, R. G., Henis, Y. I., Kloog, Y., and Hancock, J. F. (2005). Individual palmitoyl residues serve distinct roles in h-ras trafficking, microlocalization, and signaling. Mol. Cell. Biol. 25:6722–6733.

    Article  Google Scholar 

  • Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997). The Ras–RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338.

    Article  Google Scholar 

  • Shalom-Feuerstein, R., Cooks, T., Raz, A., and Kloog, Y. (2005). Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res. 65:7292–7300.

    Article  Google Scholar 

  • Shields, J. M., Pruitt, K., McFall, A., Shaub, A., and Der, C. J. (2000). Understanding Ras: ‘it ain't over ‘til it's over’. Trends Cell Biol. 10:147–154.

    Article  Google Scholar 

  • Sierra, D. A., Popov, S., and Wilkie, T. M. (2000). Regulators of G-protein signaling in receptor complexes. Trends Cardiovasc. Med. 10:263–268.

    Article  Google Scholar 

  • Silvius, J. R., Bhagatji, P., Leventis, R., and Terrone, D. (2006). K-ras4B and prenylated proteins lacking “second signals” associate dynamically with cellular membranes. Mol. Biol. Cell. 17:192–202.

    Article  Google Scholar 

  • Smotrys, J. E., and Linder, M. E. (2004). Palmitoylation of intracellular signaling proteins: Regulation and function. Annu. Rev. Biochem. 73:559–587.

    Article  Google Scholar 

  • Song, S. K., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M., and Lisanti, M. P. (1996). Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271:9690–9697.

    Article  Google Scholar 

  • Swarthout, J. T., Lobo, S., Farh, L., Croke, M. R., Greentree, W. K., Deschenes, R. J., and Linder, M. E. (2005). DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J. Biol. Chem. 280:31141–31148.

    Article  Google Scholar 

  • Vanhaesebroeck, B., Leevers, S. J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P. C., Woscholski, R., Parker, P. J., and Waterfield, M. D. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70:535–602.

    Article  Google Scholar 

  • Weisz, B., Giehl, K., Gana-Weisz, M., Egozi, Y., Ben-Baruch, G., Marciano, D., Gierschik, P., and Kloog, Y. (1999). A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 18:2579–2588.

    Article  Google Scholar 

  • Wymann, M. P., Sozzani, S., Altruda, F., Mantovani, A., and Hirsch, E. (2000). Lipids on the move: Phosphoinositide 3-kinases in leukocyte function. Immunol. Today 21:260–264.

    Article  Google Scholar 

  • Zhang, B., Prendergast, G. C., and Fenton, R. G. (2002). Farnesyltransferase inhibitors reverse Ras-mediated inhibition of Fas gene expression. Cancer Res. 62:450–458.

    Google Scholar 

  • Zimmermann, S., and Moelling, K. (1999). Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank S.R. Smith for editorial assistance. Yoel Kloog is an incumbent of The Jack H. Skirball Chair in Applied Neurobiology. This work was supported in part by grants from The Israel Science Foundation Grants 339/02-3(YK) 424/02-16.6 (UA), the Wolfson Family Foundation Trust (YK), and the Minerva Junior Research Group (UA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoel Kloog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashery, U., Yizhar, O., Rotblat, B. et al. Spatiotemporal Organization of Ras Signaling: Rasosomes and the Galectin Switch. Cell Mol Neurobiol 26, 469–493 (2006). https://doi.org/10.1007/s10571-006-9059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9059-3

KEY WORDS:

Navigation