Skip to main content
Log in

Early Neuroendocrine Alterations in Female Rats Following a Diet Moderately Enriched in Fat

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    High-fat diets disrupt metabolic equilibrium and hypothalamic-pituitary-adrenal axis function and may lead to the development of metabolic and endocrine dysfunctions. The early neuroendocrine responses elicited by a combination of short-term metabolic and emotional stressors is not fully elucidated.

  2. 2.

    The purpose of the present study was to determine the impact on female rats, of a short-term enriched in fat diet, combined with an acute stressor.

  3. 3.

    Adult female Wistar rats were fed a fat diet for 7 days and subsequently exposed to 5 min swimming stress. Plasma leptin, insulin, glucose, luteinizing hormone (LH) and corticosterone, along with brain corticosteroid receptors’ mRNAs were measured at 1 h post stress.

  4. 4.

    Diet, compared to chow, reduced food intake and body weight gain, increased leptin and LH, and decreased glucose in the periphery. The diet increased plasma corticosterone and reduced GR mRNA in the hippocampus, similarly to swim stress.

  5. 5.

    The diet significantly modified the animals’ response to the subsequent swim stress, by blocking further corticosterone rise and GR mRNA reduction. In addition, exposure of diet-fed rats to stress, altered their endocrine response, in terms of leptin and LH.

  6. 6.

    These observations suggest that even short, moderately unbalanced diets can affect peripheral and central components of energy balance, reproduction and stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackroff, K., Vigorito, M., and Sclafani, A. (1990). Fat appetite in rats: The response of infant and adult rats to nutritive and non-nutritive oil emulsions. Appetite 15:171–188.

    Article  PubMed  Google Scholar 

  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., and Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252.

    Article  PubMed  Google Scholar 

  • Ainslie, D. A., Proietto, J., Fam, B. C., and Thorburn, A. W. (2000). Short-term, high-fat diets lower circulating leptin concentrations in rats. Am. J. Clin. Nutr. 71:438–442.

    PubMed  Google Scholar 

  • Anderwald, C., Muller, G., Koca, G., Furnsinn, C., Waldhausl, W., and Roden, M. (2002). Short-term leptin-dependent inhibition of hepatic gluconeogenesis is mediated by insulin receptor substrate-2. Mol. Endocrinol. 16:1612–1628.

    Article  PubMed  Google Scholar 

  • Brann, D. W., and Mahesh, V. B. (1991). Role of corticosteroids in female reproduction. FASEB J. 5:2691–2698.

    PubMed  Google Scholar 

  • Burcelin, R., Thorens, B., Glauser, M., Gaillard, R. C., and Pralong, F. P. (2003). Gonadotropin-releasing hormone secretion from hypothalamic neurons: Stimulation by insulin and potentiation by leptin. Endocrinology 144:4484–4491.

    Article  PubMed  Google Scholar 

  • Buwalda, B., Blom, W. A., Koolhaas, J. M., and van Dijk, G. (2001). Behavioral and physiological responses to stress are affected by high-fat feeding in male rats. Physiol. Behav. 73:371–377.

    Article  PubMed  Google Scholar 

  • Cagampang, F. R., Cates, P. S., Sandhu, S., Strutton, P. H., McGarvey, C., Coen, C. W., and O’Byrne, K. T. (1997). Hypoglycaemia-induced inhibition of pulsatile luteinizing hormone secretion in female rats: Role of oestradiol, endogenous opioids and the adrenal medulla. J. Neuroendocrinol. 9:867–872.

    Article  PubMed  Google Scholar 

  • Chan, O., Inouye, K., Riddell, M. C., Vranic, M., and Matthews, S. G. (2003). Diabetes and the hypothalamo-pituitary-adrenal (HPA) axis. Minerva Endocrinol. 28:87–102.

    PubMed  Google Scholar 

  • Chehab, F. F., Lim, M. E., and Lu, R. (1996). Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 12:318–320.

    Article  PubMed  Google Scholar 

  • Cheung, C. C., Clifton, D. K., and Steiner, R. A. (2000). Perspectives on leptin’s role as a metabolic signal for the onset of puberty. Front. Horm. Res. 26:87–105.

    PubMed  Google Scholar 

  • Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by guanidnium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    PubMed  Google Scholar 

  • Cruciani-Guglielmacci, C., Vincent-Lamon, M., Rouch, C., Orosco, M., Ktorza, A., and Magnan, C. (2004). Early change in insulin secretion and action induced by high fat diet and related to decreased sympathetic nervous system activity. Am. J. Physiol. Endo. Metab. (e-pub, September 7).

  • de Kloet, E. R. (2003). Hormones, brain and stress. Endocr. Regul. 37:51–68.

    PubMed  Google Scholar 

  • Dong, Y., Poellinger, L., Gustafsson, J. A., and Okret, S. (1988). Regulation of glucocorticoid receptor expression: evidence for transcriptional and posttranslational mechanisms. Mol. Endocrinol. 2:1256–1264.

    PubMed  Google Scholar 

  • Frisch, R. E., Hegsted, D. M., and Yoshinaga, K. (1975). Body weight and food intake at early estrus of rats on a high-fat diet. Proc. Natl. Acad. Sci. U S A 72:4172–4176.

    PubMed  Google Scholar 

  • Giovambattista, A., Chisari, A. N., Gaillard, R. C., and Spinedi, E. (2000). Food intake-induced leptin secretion modulates hypothalamo-pituitary-adrenal axis response and hypothalamic Ob-Rb expression to insulin administration. Neuroendocrinology 72:341–349.

    Article  PubMed  Google Scholar 

  • Gotoh, M., Tajima, T., Suzuki, Y., Ikari, H., Iguchi, A., Kakumu, S., and Hirooka, Y. (1998). Swimming stress that causes hyperglycemia increases in vivo release of noradrenaline, but not acetylcholine, from the hypothalamus of conscious rats. Brain Res. 780:74–79.

    Article  PubMed  Google Scholar 

  • Havel, P. J. (2001). Peripheral signals conveying metabolic information to the brain: Short-term and long-term regulation of food intake and energy homeostasis. Exp. Biol. Med. (Maywood) 226:963–977.

    Google Scholar 

  • Havel, P. J., Townsend, R., Chaump, L., and Teff, K. (1999). High-fat meals reduce 24-h circulating leptin concentrations in women. Diabetes 48:334–341.

    PubMed  Google Scholar 

  • Heiman, M. L., Ahima, R. S., Craft, L. S., Schoner, B., Stephens, T. W., and Flier, J. S. (1997). Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 138:3859–3863.

    Article  PubMed  Google Scholar 

  • Herman, J. P., Adams, D., and Prewitt, C. (1995). Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61:180–190.

    PubMed  Google Scholar 

  • Kalra, S. P., Dube, M. G., Pu, S., Xu, B., Horvath, T. L., and Kalra P. S. (1999). Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20:68–100.

    Article  PubMed  Google Scholar 

  • Kamara, K., Eskay, R., and Castonguay, T. (1998). High-fat diets and stress responsivity. Physiol. Behav. 64:1–6.

    Article  PubMed  Google Scholar 

  • Karandrea, D., Kittas, C., and Kitraki, E. (2002). Forced swimming differentially affects male and female brain corticosteroid receptors. Neuroendocrinology 75:217–226.

    Article  PubMed  Google Scholar 

  • Kellendonk, C., Eiden, S., Kretz, O., Schutz, G., Schmidt, I., Tronche, F., and Simon, E. (2002). Inactivation of the GR in the nervous system affects energy accumulation. Endocrinology 143:2333–2340.

    Article  PubMed  Google Scholar 

  • Kiess, W., Muller, G., Galler, A., Reich, A., Deutscher, J., Klammt, J., and Kratzsch, J. (2000). Body fat mass, leptin and puberty. J. Pediatr. Endocrinol. Metab. 13:717–722.

    PubMed  Google Scholar 

  • Kitraki, E., Karandrea, D., and Kittas, C. (1999). Long-lasting effects of stress on glucocorticoid receptor gene expression in the rat brain. Neuroendocrinology 69:331–338.

    Article  PubMed  Google Scholar 

  • Kitraki, E., Soulis, G., and Gerozissis, K. (2004). Impaired neuroendocrine response to stress following a short term fat-enriched diet. Neuroendocrinology 79:338–345.

    Article  PubMed  Google Scholar 

  • Kraegen, E. W., Clark, P. W., Jenkins, A. B., Daley, E. A., Chisholm, D. J., and Storlien, L. H. (1991). Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40:1397–1403.

    PubMed  Google Scholar 

  • Makino, S., Hashimoto, K., and Gold, P. W. (2002). Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol. Biochem. Behav. 73:147–158.

    Article  PubMed  Google Scholar 

  • Nagatani, S., Guthikonda, P., Thompson, R. C., Tsukamura, H., Maeda, K. I., and Foster, D. L. (1998). Evidence for GnRH regulation by leptin: Leptin administration prevents reduced pulsatile LH secretion during fasting. Neuroendocrinology 67:370–376.

    Article  PubMed  Google Scholar 

  • Pagano, C., Marzolo, M., Granzotto, M., Ricquier, D., Federspil, G., and Vettor, R. (1999). Acute effects of exercise on circulating leptin in lean and genetically obese fa/fa rats. Biochem. Biophys. Res. Commun. 255:698–702.

    Article  PubMed  Google Scholar 

  • Pascoe, W. S., Smythe, G. A., and Storlien, L. H. (1991). Enhanced responses to stress induced by fat-feeding in rats: Relationship between hypothalamic noradrenaline and blood glucose. Brain Res. 550:192–196.

    Article  PubMed  Google Scholar 

  • Pilkis, S. J., and Granner, D. K. (1992). Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol. 54:885–909.

    Article  PubMed  Google Scholar 

  • Rayner, D. V., and Trayhurn, P. (2001). Regulation of leptin production: Sympathetic nervous system interactions. J. Mol. Med. 79:8–20.

    Article  PubMed  Google Scholar 

  • Sandoval, D. A., and Davis, S. N. (2003). Leptin: Metabolic control and regulation. J. Diab. Complications 17:108–113.

    Article  Google Scholar 

  • Slieker, L. J., Sloop, K. W., Surfac, P. L., Kriauciunas, A., LaQuier, F., Manetta, J., Bue-Valleskey, J., and Stephens, T. W. (1996). Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP. J. Biol. Chem. 271:5301–5304.

    Article  PubMed  Google Scholar 

  • Smythe, G. A., Pascoe, W. S., and Storlien, L. H. (1989). Hypothalamic noradrenergic and sympathoadrenal control of glycemia after stress. Am. J. Physiol. 256:E231–235.

    PubMed  Google Scholar 

  • Spinedi, E., and Gaillard, R. C. (1998). A regulatory loop between the hypothalamo-pituitary-adrenal (HPA) axis and circulating leptin: A physiological role of ACTH. Endocrinology 139:4016–4020.

    Article  PubMed  Google Scholar 

  • Strack, A. M., Horsley, C. J., Sebastian, R. J., Akana, S. F., and Dallman, M. F. (1995). Glucocorticoids and insulin: Complex interaction on brown adipose tissue. Am. J. Physiol. 268:R1209–1216.

    PubMed  Google Scholar 

  • Tannenbaum, B. M., Brindley, D. N., Tannenbaum, G. S., Dallman, M. F., McArthur, M. D., and Meaney, M. J. (1997). High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am. J. Physiol. 273:E1168–1177.

    PubMed  Google Scholar 

  • Unger, R. H., and Orci, L. (2001). Diseases of liporegulation: New perspective on obesity and related disorders. FASEB J. 15:312–321.

    Article  PubMed  Google Scholar 

  • Wang, J., Obici, S., Morgan, K., Barzilai, N., Feng, Z., and Rossetti, L. (2001). Overfeeding rapidly induces leptin and insulin resistance. Diabetes 50:2786–2791.

    PubMed  Google Scholar 

  • Watanobe, H. (2002). Leptin directly acts within the hypothalamus to stimulate gonadotrophin-releasing hormone secretion in vivo in rats. J. Physiol. 545:255–268.

    Article  PubMed  Google Scholar 

  • Webster, J. C., and Cidlowski, J. A (1994). Downregulation of the glucocorticoid receptor. A mechanism for physiological adaptation to hormones. Ann. N. Y. Acad. Sci. 746:216–220.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriaki Gerozissis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulis, G., Kitraki, E. & Gerozissis, K. Early Neuroendocrine Alterations in Female Rats Following a Diet Moderately Enriched in Fat. Cell Mol Neurobiol 25, 869–880 (2005). https://doi.org/10.1007/s10571-005-4943-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-4943-9

Keywords

Navigation