Skip to main content

Advertisement

Log in

Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

With the aim of developing self-disinfecting materials to prevent pathogen transmission from surfaces to new hosts, here we report a simple and eco-friendly way to prepare photodynamic bacterial cellulose (BC) onto which the naturally-occurring photosensitizer hypocrellin (Hc) has been covalently appended. The resultant hypocrellin-grafted BC membrane (Hc-BC) was characterized by both physical (SEM, TGA, XRD) and spectroscopic (IR, diffuse reflectance UV–visible) methods, and the photosensitizer loading was found to be 155 nmol Hc/mg membrane. Indirect cytotoxicity tests employing mouse skin fibroblast (L929) cells showed no changes in cell viability, demonstrating that the Hc-BC membrane lacked any leachable components (e.g., unreacted coupling agent or hypocrellin) that could be cytotoxic to mammalian cells. The photodynamic antibacterial activity of Hc-BC was evaluated against gram-positive S. aureus (ATCC-6538) and gram-negative E. coli strain 8099. Our results demonstrated a 99.5 + % (2.7 log units) reduction in S. aureus upon illumination (Xe lamp, 65 ± 5 mW/cm2, 420–780 nm; 30 min), however, no statistically significant inactivation of E. coli was observed. Potentiation with potassium iodide was found to increase the antibacterial efficacy of Hc-BC against S. aureus to 99.997% (4.8 log units) at 10 mM KI, while E. coli was inactivated by 99.1% (2 log units) at 100 mM KI, with the increase in inactivation being attributable to short-lived reactive iodide radicals that are the major biocidal agents in the potentiation of Hc-BC by KI. Taken together, our findings demonstrated that hypocrellin-grafted bacterial cellulose is a sustainable material from which potent photodynamic antibacterial materials may be derived.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473:347–364

    Article  CAS  PubMed  Google Scholar 

  • Alvarado DR, Argyropoulos DS, Scholle F, Peddinti BST, Ghiladi RA (2019) A facile strategy for photoactive nanocellulose-based antimicrobial materials. Green Chem 21:3424–3435

    Article  CAS  Google Scholar 

  • Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:e7

    Article  Google Scholar 

  • Bezman SA, Burtis PA, Izod TPJ, Thayer MA (1978) Photodynamic Inactivation of E. coli by Rose Bengal immobilized on Polystyrene Beads. Photochem Photobiol 28:325–329

    Article  CAS  PubMed  Google Scholar 

  • Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826

    Article  CAS  PubMed  Google Scholar 

  • Braathen G, Chou PT, Frei H (1988) Time-resolved reaction of 1O2 with iodide in aqueous solution. J Phys Chem 92:6610–6615

    Article  CAS  Google Scholar 

  • Carpenter BL, Feese E, Sadeghifar H, Argyropoulos DS, Ghiladi RA (2012) Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. Photochem Photobiol 88:527–536

    Article  CAS  PubMed  Google Scholar 

  • Carpenter BL, Scholle F, Sadeghifar H, Francis AJ, Boltersdorf J, Weare WW, Argyropoulos DS, Maggard PA, Ghiladi RA (2015a) Synthesis, characterization, and antimicrobial efficacy of photomicrobicidal cellulose paper. Biomacromol 16:2482–2492

    Article  CAS  Google Scholar 

  • Carpenter BL, Situ X, Scholle F, Bartelmess J, Weare WW, Ghiladi RA (2015b) Antiviral, antifungal and antibacterial activities of a bodipy-based photosensitizer. Molecules 20:10604–10621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME et al (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19:56–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Tian J, He W, Guo Z (2015) H2O2-activatable and O2-Evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc 137:1539–1547

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang W, Ge X, Wei Q, Ghiladi RA, Wang Q (2018) Photooxidation properties of photosensitizer/direct dye patterned polyester/cotton fabrics. Fiber Polym 19:1687–1693

    Article  CAS  Google Scholar 

  • Cheng H, Zhu J-Y, Li S-Y, Zeng J-Y, Lei Q, Chen K-W, Zhang C, Zhang X-Z (2016) An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv Funct Mater 26:7847–7860

    Article  CAS  Google Scholar 

  • Chio-Srichan S, Oudrhiri N, Bennaceur-Griscelli A, Turhan AG, Dumas P, Refregiers M (2010) Toxicity and phototoxicity of hypocrellin a on malignant human cell lines, evidence of a synergistic action of photodynamic therapy with imatinib mesylate. J Photochem Photobiol B: Biol 99:100–104

    Article  CAS  Google Scholar 

  • Chu M, Gao H, Liu S, Wang L, Jia Y, Gao M, Wan M, Xu C, Ren L (2018) Functionalization of composite bacterial cellulose with C60 nanoparticles for wound dressing and cancer therapy. RSC Advances 8:18197–18203

    Article  CAS  Google Scholar 

  • Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T (2018) Antimicrobial photodynamic therapy—what we know and what we don’t. Crit Rev Microbiol 44:571–589

    Article  CAS  PubMed  Google Scholar 

  • Costa L, Faustino MA, Neves MG, Cunha A, Almeida A (2012) Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses 4:1034–1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Dei D, Chiti G, Filippis MPd, Fanetti L, Giuliani F, Giuntini F, Giulio M, Fantetti L et al (2006) Phthalocyanines as photodynamic agents for the inactivation of microbial pathogens. J Porphyrins Phthalocyanines 10:147–159

    Article  CAS  Google Scholar 

  • Diwu Z (1995) Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem Photobiol 61:529–539

    Article  CAS  PubMed  Google Scholar 

  • Diwu Z, Lown JW (1990) Hypocrellins and their use in photosensitization. Photochem Photobiol 52:609–616

    Article  CAS  Google Scholar 

  • Dong J, Ghiladi RA, Wang Q, Cai Y, Wei Q (2018a) Protoporphyrin-IX conjugated cellulose nanofibers that exhibit high antibacterial photodynamic inactivation efficacy. Nanotechnology 29:e265601

    Article  CAS  Google Scholar 

  • Dong J, Ghiladi RA, Wang Q, Cai Y, Wei Q (2018b) Protoporphyrin IX conjugated bacterial cellulose via diamide spacer arms with specific antibacterial photodynamic inactivation against Escherichia coli. Cellulose 25:1673–1686

    Article  CAS  Google Scholar 

  • Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12

    Article  CAS  PubMed  Google Scholar 

  • Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromol 12:3528–3539

    Article  CAS  Google Scholar 

  • Gardner JM, Abrahamsson M, Farnum BH, Meyer GJ (2009) Visible light generation of iodine atoms and I−I bonds: sensitized I oxidation and I3 photodissociation. J Am Chem Soc 131:16206–16214

    Article  CAS  PubMed  Google Scholar 

  • Giuliani F, Martinelli M, Cocchi A, Arbia D, Fantetti L, Roncucci G (2010) In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob Agents Chemother 54:637–642

    Article  CAS  PubMed  Google Scholar 

  • Goubeau J, Jahn EL, Kreutzberger A, Grundmann C (1954) Triazines. X. The infrared and raman spectra of 1,3,5-triazine. J Phys Chem 58:1078–1081

    Article  CAS  Google Scholar 

  • Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamblin MR, Abrahamse H (2018) Inorganic salts and antimicrobial photodynamic therapy: mechanistic conundrums? Molecules 23:3190

    Article  PubMed Central  CAS  Google Scholar 

  • Henke P, Kozak H, Artemenko A, Kubát P, Forstová J, Mosinger J (2014) Superhydrophilic polystyrene nanofiber materials generating O2(1Δg): postprocessing surface modifications toward efficient antibacterial effect. ACS Appl Mater Interfaces 6:13007–13014

    Article  CAS  PubMed  Google Scholar 

  • Hettegger H, Gorfer M, Sortino S, Fraix A, Bandian D, Rohrer C, Harreither W, Potthast A, Rosenau T (2015) Synthesis, characterization and photo-bactericidal activity of silanized xanthene-modified bacterial cellulose membranes. Cellulose 22:3291–3304

    Article  CAS  Google Scholar 

  • Hirayama J, Ikebuchi K, Abe H, Kwon K-W, Ohnishi Y, Horiuchi M, Shinagawa M, Ikuta K et al (1997) Photoinactivation of virus infectivity by hypocrellin A. Photochem Photobiol 66:697–700

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T et al (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54:3834–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR (2012) Type I and type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 44:490–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, El-Hussein A, Xuan W, Hamblin MR (2018a) Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J Photochem Photobiol B Biol 178:277–286

    Article  CAS  Google Scholar 

  • Huang L, Wang M, Huang Y-Y, El-Hussein A, Wolf LM, Chiang LY, Hamblin MR (2018b) Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates. Photochem Photobiol Sci 17:638–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y-Y, Wintner A, Seed PC, Brauns T, Gelfand JA, Hamblin MR (2018c) Antimicrobial photodynamic therapy mediated by methylene blue and potassium iodide to treat urinary tract infection in a female rat model. Sci Rep 8:7257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hudson JB, Zhou J, Chen J, Harris L, Yip L, Towers GHN (1994) Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus. Photochem Photobiol 60:253–255

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Gu J, Tian X, Li Y, Huang D (2012a) Modification of cellulose for high glucose generation. Bioresour Technol 104:473–479

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Xia X, Leung AW, Xiang J, Xu C (2012b) Apoptosis of breast cancer cells induced by hypocrellin B under light-emitting diode irradiation. Photodiagn Photodyn Ther 9:337–343

    Article  CAS  Google Scholar 

  • Jiang C, Scholle F, Ghiladi RA (2019) Mn-doped Zn/S quantum dots as photosensitizers for antimicrobial photodynamic inactivation. SPIE 108630Q

  • Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application. J Polym Res 18:739–744

    Article  CAS  Google Scholar 

  • Li W, Zhou J, Xu Y (2015) Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep 3:617–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Nandgaonkar AG, Wang Q, Zhang J, Krause WE, Wei Q, Lucia LA (2017) Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo- and bio-catalytic dye degradation. J Membr Sci 525:89–98

    Article  CAS  Google Scholar 

  • Liang X-H, Cai Y-J, Liao X-R, Wu K, Wang L, Zhang D-B, Meng Q (2009) Isolation and identification of a new hypocrellin A-producing strain Shiraia sp. SUPER-H168. Microbiol Res 164:9–17

    Article  CAS  PubMed  Google Scholar 

  • Liu L-P, Yang X-N, Ye L, Xue D-D, Liu M, Jia S-R, Hou Y, Chu L-Q, Zhong C (2017) Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydr Polym 174:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Khan SI, Jacob MR, Tekwani BL, Li Z, Pasco DS, Walker LA, Khan IA (2004) Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob Agents Chemother 48:4450–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majiya H, Chowdhury KF, Stonehouse NJ, Millner P (2019) TMPyP functionalised chitosan membrane for efficient sunlight driven water disinfection. J Water Process Eng 30:100475

    Article  Google Scholar 

  • Mbakidi JP, Herke K, Alves S, Chaleix V, Granet R, Krausz P, Leroy-Lhez S, Ouk TS, Sol V (2013) Synthesis and photobiocidal properties of cationic porphyrin-grafted paper. Carbohydr Polym 91:333–338

    Article  CAS  PubMed  Google Scholar 

  • Menezes S, Capella MA, Caldas LR (1990) Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J Photochem Photobiol, B 5:505–517

    Article  CAS  Google Scholar 

  • Mesquita MQ, Dias CJ, Neves MGPMS, Almeida A, Faustino MAF (2018) Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules 23:2424

    Article  CAS  Google Scholar 

  • Miller GG, Brown K, Ballangrud ÅM, Barajas O, Xiao Z, Tulip J, Lown JW, Leithoff JM et al (1997) Preclinical assessment of hypocrellin B and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: progress update. Photochem Photobiol 65:714–722

    Article  CAS  PubMed  Google Scholar 

  • Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (2000) Mechanism of Uptake of a Cationic Water-Soluble Pyridinium Zinc Phthalocyanine across the Outer Membrane of Escherichia coli. Antimicrob Agents Chemother 44:522–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosinger J, Mosinger B (1995) Photodynamic sensitizers assay: rapid and sensitive iodometric measurement. Experientia 51:106–109

    Article  CAS  PubMed  Google Scholar 

  • Nzambe Ta keki JK, Ouk T-S, Zerrouki R, Faugeras P-A, Sol V, Brouillette F (2016) Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers. Mater Sci Eng, C 62:61–67

    Article  CAS  Google Scholar 

  • Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJL (2007) In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383

    Chapter  Google Scholar 

  • Peddinti BST, Scholle F, Ghiladi RA, Spontak RJ (2018) Photodynamic polymers as comprehensive anti-infective materials: staying ahead of a growing global threat. ACS Appl Mater Interfaces 10:25955–25959

    Article  CAS  PubMed  Google Scholar 

  • Peres MFS, Nigoghossian K, Primo FL, Saska S, Capote TSO, Caminaga RMS, Messaddeq Y, Ribeiro SJL, Tedesco AC (2016) Bacterial cellulose membranes as a potential drug delivery system for photodynamic therapy of skin cancer. J Braz Chem Soc 27:1949–1959

    CAS  Google Scholar 

  • Pillar-Little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY (2018) Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon 140:616–623

    Article  CAS  Google Scholar 

  • Portela R, Leal CR, Almeida PL, Sobral RG (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12:586–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi R, Fayyaz F, Rassa M (2016) The study of cellulosic fabrics impregnated with porphyrin compounds for use as photo-bactericidal polymers. Mater Sci Eng, C 59:661–668

    Article  CAS  Google Scholar 

  • Ringot C, Sol V, Barriere M, Saad N, Bressollier P, Granet R, Couleaud P, Frochot C, Krausz P (2011) Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity. Biomacromol 12:1716–1723

    Article  CAS  Google Scholar 

  • Salmon-Divon M, Nitzan Y, Malik Z (2004) Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso (N-methylpyridyl)porphine. Photochem Photobiol Sci 3:423–429

    Article  CAS  PubMed  Google Scholar 

  • Sebrão CCN, Bezerra AG Jr, de França PHC, Ferreira LE, Westphalen VPD (2017) Comparison of the efficiency of rose Bengal and methylene blue as photosensitizers in photodynamic therapy techniques for enterococcus faecalis inactivation. Photomed Laser Surg 35:18–23

    Article  PubMed  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Silva AF, Borges A, Freitas CF, Hioka N, Mikcha JMG, Simões M (2018) Antimicrobial photodynamic inactivation mediated by rose bengal and erythrosine is effective in the control of food-related bacteria in planktonic and biofilm states. Molecules 23:2288

    Article  PubMed Central  CAS  Google Scholar 

  • Souza DM, Alves PM, Silva MLF, Paulino TP, Coraspe HO, Mendonça MMS, Ribeiro BM, da Silva MV et al (2017) 5-ALA-mediated photodynamic therapy reduces the parasite load in mice infected with Leishmania braziliensis. Parasite Immunol 39:e12403

    Article  CAS  Google Scholar 

  • Stanley S, Scholle F, Zhu J, Lu Y, Zhang X, Situ X, Ghiladi R (2016) Photosensitizer-embedded polyacrylonitrile nanofibers as antimicrobial non-woven textile. Nanomaterials 6:e77

    Article  PubMed  CAS  Google Scholar 

  • Stojiljkovic I, Evavold BD, Kumar V (2001) Antimicrobial properties of porphyrins. Expert Opin Investig Drugs 10:309–320

    Article  CAS  PubMed  Google Scholar 

  • Stoll KR, Scholle F, Zhu J, Zhang X, Ghiladi RA (2019) BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochem Photobiol Sci 18:1923–1932

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Rao S, Cai Y, Yang Y (2010) Preparation and characterization of the inclusion complex of hypocrellin A with hydroxypropyl-β-cyclodextrin. Eur Food Res Technol 231:781–788

    Article  CAS  Google Scholar 

  • Su Y, Sun J, Rao S, Cai Y, Yang Y (2011) Photodynamic antimicrobial activity of hypocrellin A. J Photochem Photobiol B: Biol 103:29–34

    Article  CAS  Google Scholar 

  • Tavares A, Carvalho CM, Faustino MA, Neves MG, Tome JP, Tome AC, Cavaleiro JA, Cunha A et al (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 8:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchio D, Gupta A, Huang L, Landi G, Avci P, Rodas A, Hamblin MR (2015) Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide. Antimicrob Agents Chemother 59:5203–5212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira C, Gomes ATPC, Mesquita MQ, Moura NMM, Neves MGPMS, Faustino MAF, Almeida A (2018) An insight into the potentiation effect of potassium iodide on aPDT efficacy. Front Microbiol 9:2665

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira C, Santos A, Mesquita MQ, Gomes ATPC, Neves MGPMS, Faustino MAF, Almeida A (2019) Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: effectiveness on bacteria and fungi planktonic/biofilm forms and viruses. J Porphyrins Phthalocyanines 23:534–545

    Article  CAS  Google Scholar 

  • Wainwright M, Antczak J, Baca M, Loughran C, Meegan K (2015) Phenothiazinium photoantimicrobials with basic side chains. J Photochem Photobiol, B 150:28–43

    Google Scholar 

  • Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR (2017) Photoantimicrobials-are we afraid of the light? Lancet Infect Dis 17:e49–e55

    Article  PubMed  Google Scholar 

  • Wang Q, Chen W, Zhang Q, Ghiladi RA, Wei Q (2018) Preparation of Photodynamic P(MMA-co-MAA) composite nanofibers doped with MMT: a facile method for increasing antimicrobial efficiency. Appl Surf Sci 457:247–255

    Article  CAS  Google Scholar 

  • World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO Priority Pathogens List for R&D of New Antibiotics

  • Wu J, Meredith JC (2014) Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Lett 3:185–190

    Article  CAS  Google Scholar 

  • Yin Y, Zhao L, Jiang X, Wang H, Gao W (2017) Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose 24:4773–4784

    Article  CAS  Google Scholar 

  • Zhang T, Lin H, Cui L, An N, Tong R, Chen Y, Yang C, Li X, Qu F (2016) NIR-sensitive UCNP@mSiO2 nanovehicles for on-demand drug release and photodynamic therapy. RSC Adv 6:26479–26489

    Article  CAS  Google Scholar 

  • Zheng X, Wang L, Pei Q, He S, Liu S, Xie Z (2017) Metal–organic framework@porous organic polymer nanocomposite for photodynamic therapy. Chem Mater 29:2374–2381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (No. 51603090), China Postdoctoral Science Foundation (No. 2018M630516), Provincial Policy Guidance Program (International Scientific and Technological Cooperation) (No. BZ2018032), and the Fundamental Research Funds for the Central Universities (JUSRP51907A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingqing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Xu, L., Shen, H. et al. Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose. Cellulose 27, 991–1007 (2020). https://doi.org/10.1007/s10570-019-02852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02852-9

Keywords

Navigation