Skip to main content
Log in

Antibacterial, highly hydrophobic and semi transparent Ag/plasma polymer nanocomposite coating on cotton fabric obtained by plasma based co-deposition

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study aims at deposition and characterization of antibacterial, hydrophobic and semitransparent metal/plasma polymer nanocomposite coating, containing Ag nanoparticles, onto cotton fabrics intended to be used in medical applications. The nano composite coatings were obtained via a simple, one step and ecofriendly plasma based co-deposition approach where silver was magnetron sputtered simultaneously with plasma polymerization of hexamethyldisiloxane (HMDSO) monomer. The nanocomposite thin films containing different concentration of silver were deposited either by varying silver sputter rate or thickness of the plasma polymer matrix to obtain a good balance between optical properties of the coated fabric and its long term antibacterial performance. The obtained coatings were investigated in detail with respect to their composition, morphology, optical properties, nanoparticle size distribution, silver ion release efficiency, antibacterial performance, water contact angle and washing stability of the coating. The thickness of the plasma matrix was found to be more important in controlling the release of silver ions as well as affecting the optical properties of the coating. The water contact angle on the coated fabric was up to 145°, close to super hydrophobicity. The coating showed effective antibacterial efficacy against Staphylococcus epidermidis (a Gram positive bacterium) which was present even when fabric was subjected to 10 repeated washing cycles indicating good washing stability of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander MR, Short RD, Jones FR, Stollenwerk M, Zabold J, Michaeli W (1996) An X-ray photoelectron spectroscopic investigation into the chemical structure of deposits formed from hexamethyldisiloxane/oxygen plasmas. J Mater Sci 31:1879–1885

    Article  CAS  Google Scholar 

  • Ali SW, Purwar R, Joshi M, Rajendran S (2014) Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose 21:2063–2072

    Article  CAS  Google Scholar 

  • Bakr O, Amendola V, Aikens C, Wenseleers W, Li R, Negro LD, Schatz GC, Stellacci F (2009) Silver nanoparticles with broad multiband linear optical absorption. Angew Chem 121:6035–6040

    Article  Google Scholar 

  • Balagna C, Perero S, Ferraris S, Miola M, Fucale G, Manfredotti C, Battiato A, Santella D, Vernè E, Vittone E, Ferraris M (2012) Antibacterial coating on polymer for space application. Mater Chem Phys 135:714–722

    Article  CAS  Google Scholar 

  • Beyene H, Tichelaar F, Peeters P, Kolev I, Sanden M, Creatore M (2010) Hybrid sputtering-remote PECVD deposition of Au nanoparticles on Sio2 layers for surface plasmon resonance-based colored coatings. Plasma Process Polym 7:657–664

    Article  CAS  Google Scholar 

  • Brunon C, Chadeau E, Oulahal N, Grossiord C, Dubost L, Bessueille F (2011) Characterization of plasma enhanced chemical vapor deposition-physical vapor deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles. Thin Solid Films 519:5838–5845

    Article  CAS  Google Scholar 

  • Chadeau E, Oulahal N, Dubost L, Favergeon F, Degraeve P (2010) Anti-listeria innocua activity of silver functionalised textile prepared with plasma technology. Food Control 21:505–512

    Article  CAS  Google Scholar 

  • Deng X, Leys C, Vujosevic D, Vuksanovic V, Uros Cvelbar DG, Morent R et al (2014) Engineering of composite organosilicon thin films with embedded silver nanoparticles via atmospheric pressure plasma process for antibacterial activity. Plasma Process Polym 11:921–930

    Article  CAS  Google Scholar 

  • Despax B, Raynaud P (2007) Deposition of ‘‘polysiloxane’’ thin films containing silver particles by an RF asymmetrical discharge. Plasma Process Polym 4:127–134

    Article  CAS  Google Scholar 

  • Drábik M, Pešička J, Biederman H, Hegemann D (2015) Long-term aging of Ag/a-C:H:O nanocomposite coatings in air and in aqueous environment. Sci Technol Adv Mater 16:2

    Article  CAS  Google Scholar 

  • El-Nahhal I, Elmanama A, Amara N, Qodih F, Selmane M, Chehimi M (2018) The efficacy of surfactants in stabilizing coating of nano-structured CuO particles onto the surface of cotton fibers and their antimicrobial activity. Mater Chem Phys 215:221–228

    Article  CAS  Google Scholar 

  • Fei Z, Liu B, Zhu M, Wang W, Yu D (2018) Antibacterial finishing of cotton fabrics based on thiol-maleimide click chemistry. Cellulose 25:3179–3188

    Article  CAS  Google Scholar 

  • Foksowicz-Flaczyk J, Walentowska J, Przybylak M, Maciejewski H (2016) Multifunctional durable properties of textile materials modified by biocidal agents in the sol–gel process. Surf Coat Technol 304:160–166

    Article  CAS  Google Scholar 

  • Gao Y, Cranston R (2010) An effective antimicrobial treatment for wool using polyhexamethylene biguanide as the biocide, part 1: biocide uptake and antimicrobial activity. J Appl Polym Sci 117:3075–3082

    Article  CAS  Google Scholar 

  • Gharibshahi L, Saion E, Gharibshahi W, Shaari AM (2017) Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 10:402

    Article  CAS  PubMed Central  Google Scholar 

  • Ghayempour S, Montazer M (2017) Ultrasound irradiation based in situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason Sonochemistry 34:458–465

    Article  CAS  Google Scholar 

  • Hanus J, Drabik M, Hlidek P, Biederman H, Radnoczi G, Slavinska D (2009) Some remarks on Ag/C: H nanocomposite films. Vacuum 83:454–456

    Article  CAS  Google Scholar 

  • Hao L, Gao T, Xu W, Wang X, Yang S, Liu X (2016) Preparation of crosslinked polysiloxane/SiO2 nanocomposite viain-situ condensation and its surface modification on cotton fabrics. Appl Surf Sci 371:281–288

    Article  CAS  Google Scholar 

  • Hlídek P, Biederman H, Choukourov A, Slavínská D (2009) Behavior of polymeric matrices containing silver inclusions, 2-oxidative aging of nanocomposite Ag/C: H and Ag/C: H: O films. Plasma Process Polym 6:34–44

    Article  CAS  Google Scholar 

  • ImageJ: https://imagej.nih.gov/ij/

  • Irfan M, Perero S, Miola M, Maina G, Ferri A, Ferraris M et al (2017) Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose 24:2331–2345

    Article  CAS  Google Scholar 

  • Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241

    Article  CAS  Google Scholar 

  • Körner E, Aguirre M, Fortunato G, Ritter A et al (2010) Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties. Plasma Process Polym 7:619–625

    Article  CAS  Google Scholar 

  • Kratochvíl J, Štěrba J, Lieskovská J, Langhansová H, Kuzminova A, Khalakhan I, Kylián O, Straňák V (2018) Antibacterial effect of Cu/C: F nanocomposites deposited on PEEK substrates. Mater Lett 230:96–99

    Article  CAS  Google Scholar 

  • Kuzminova A, Beranová J, Polonskyi O, Shelemin A, Kyliána O, Choukourov A (2016) Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf Coat Technol 25:225–230

    Article  CAS  Google Scholar 

  • Kylián O, Kratochvíl J, Petr M, Kuzminova A, Slavínská Danka, Biederman H (2017) Ag/C: F Antibacterial and hydrophobic nanocomposite coatings. Funct Mater Lett 10:1–4

    Article  CAS  Google Scholar 

  • Lin J, Chen X, Chen C, Hu J, Zhou C, Cai X et al (2018) Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. Appl Mater Interfaces 10:6124–6136

    Article  CAS  Google Scholar 

  • Liu Y, Li J, Cheng X, Ren X, Huang T (2015) Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate. J Mater Chem B 3:1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Mariselvam R, Ranjitsingh R, Selvakumar M, Krishnamoorthy R, Alshatwi A (2017) Eco friendly natural dyes from Syzygium cumini (L) (Jambolan) Fruit seed endosperm and to preparation of antimicrobial fabric and their washing properties. Fibers Polym 18:460–464

    Article  CAS  Google Scholar 

  • Moulder J, Chastain J (1992) Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation, Waltham

    Google Scholar 

  • Perelshtein I, Lipovsky A, Perkas N, Tzanov T, Arguirova M, Leseva M (2015) Making the hospital a safer place by sonochemical coating of all its textiles with antibacterial nanoparticles. Ultrason Sonochemistry 25:82–88

    Article  CAS  Google Scholar 

  • Peter T, Wegner M, Zaporojtchenko V, Strunskus T, Bornholdt S, Kersten H et al (2011) Metal/polymer nanocomposite thin films prepared by plasma polymerization and high pressure magnetron sputtering. Surf Coat Technol 205:S38–S41

    Article  CAS  Google Scholar 

  • Pisitsak P, Ruktanonchai U (2014) Preparation, characterization, and in vitro evaluation of antibacterial sol–gel coated cotton textiles with prolonged release of curcumin. Text Res J 85:949–959

    Article  CAS  Google Scholar 

  • Ponomarev V, Sukhorukova I, Sheveyko A, Permyakova E, Manakhov A, Ignatov S et al (2018) Antibacterial performance of TiCaPCON Films incorporated with Ag, Pt, and Zn: bactericidal ions versus surface microgalvanic interactions. Appl Mater Interfaces 10:24406–24420

    Article  CAS  Google Scholar 

  • Radeva E, Georgieva V, Lazarov J, Gadjanova V, Tsankov D (2014) Plasma polymerized hexamethyldisiloxane thin films for NO2 gas sensor application. Dig J Nanomater Biostructures 9:459–466

    Google Scholar 

  • Ramirez D, Jaramillo F (2018) Improved mechanical and antibacterial properties of thermoplastic polyurethanes by efficient double functionalization of silver nanoparticles. J Appl Polym Sci 135:46180

    Article  CAS  Google Scholar 

  • Rau C, Kulisch W (1994) Mechanisms of plasma polymerization of various silico-organic monomers. Thin Solid Films 249:28–37

    Article  CAS  Google Scholar 

  • Saulou C, Despax B, Raynaud P, Zanna S, Seyeux A, Marcus P et al (2012) Plasma-mediated nanosilver-organosilicon composite films deposited on stainless steel: synthesis, surface characterization, and evaluation of anti-adhesive and anti-microbial properties on the model yeast saccharomyces cerevisiae. Plasma Process Polym 9:324–338

    Article  CAS  Google Scholar 

  • Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7:979–990

    Article  CAS  PubMed  Google Scholar 

  • Schmittgens R, Wolf M, Schultheiss E (2009) A versatile system for large area coating of nanocomposite thin films. Plasma Process Polym 6:S912–S916

    Article  CAS  Google Scholar 

  • Stawski D, Sahariah P, Hjálmarsdóttir M, Wojciechowska D, Puchalski M, Másson M (2016) N, N, N-trimethyl chitosan as an efficient antibacterial agent for polypropylene and polylactide nonwovens. J Text Inst 108:1041–1049

    Article  CAS  Google Scholar 

  • Tomšič B, Simončič B, Orel B, Černe L, Tavčer P, Zorko M et al (2008) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol Gel Sci Technol 47:44–57

    Article  CAS  Google Scholar 

  • Wang RX, Tao XM, Wang Y, Wang GF, Shang SM (2010) Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf Coat Technol 204:1206–1210

    Article  CAS  Google Scholar 

  • Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem 110:15666–15675

    Article  CAS  Google Scholar 

  • Wu T, Lu F, Wen QY, Lu B, Rong B, Dai F et al (2018) Ovel strategy for obtaining uniformly dispersed silver nanoparticles on soluble cotton wound dressing through carboxymethylation and in situ reduction: antimicrobial activity and histological assessment in animal model. Cellulose 25:5361–5376

    Article  CAS  Google Scholar 

  • Xu Q, Xie L, Diao H, Li F, Zhang Y, Fu F et al (2017) Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym 177:187–193

    Article  CAS  PubMed  Google Scholar 

  • Zemljič L, Peršin Z, Šauperl O, Rudolf A, Kostić M (2017) Medical textiles based on viscose rayon fabrics coated with chitosan-encapsulated iodine: antibacterial and antioxidant properties. Text Res J 88:2519–2531

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Polonskyi, O., Hinz, A. et al. Antibacterial, highly hydrophobic and semi transparent Ag/plasma polymer nanocomposite coating on cotton fabric obtained by plasma based co-deposition. Cellulose 26, 8877–8894 (2019). https://doi.org/10.1007/s10570-019-02685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02685-6

Keywords

Navigation