Skip to main content
Log in

Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Unique rheological and phase behaviors of rod-like nanocrystalline cellulose (NCC) suspensions in aqueous media are revealed in the present article. Specifically, the NCC aqueous suspension remained isotropic in a wide NCC concentration range in which the suspension underwent transition from dilute solution to gel, and the relative viscosity of the NCC suspension could be well fitted by the Sato-Teramoto theory in the full concentration range tested. Correspondingly, both zero-shear viscosity and complex viscosity increased monotonically with NCC concentration, and no maximum value was observed along the curves of zero-shear viscosity or complex viscosity versus NCC concentration, indicating a deviation from the lyotropic system. However, a shear-induced birefringence phenomenon was observed, indicating the NCC suspension formed a temporary ordered structure in the external force field but was unable to form an anisotropic (liquid crystalline) phase. The Cox-Merz rule was not applicable for the NCC suspension as a result of oriented domains, i.e., rod-like NCC particles. Moreover, time-concentration superposition was successfully applied to both the storage and loss modulus, attributed to the isotropic feature of the NCC suspension in the tested concentration range. The reason why this NCC suspension remained isotropic could be because of the strong electrostatic repulsions between NCC particles and the weak tendency or driving force of anisotropy formation as a result of the small aspect ratio of NCC particles, Na+ counterions and large amounts of negative charges along the NCC particles. The results suggested that not all the rod-like particles were able to form an anisotropic phase in aqueous suspension, but dominated by various factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  CAS  Google Scholar 

  • Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415

    Article  CAS  Google Scholar 

  • Beck S, Roman M, Gray DG (2005) Effect of reaction condition on the properties and the behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) A new method to control iridescence colour in solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskeys. Macromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Berry DH, Russel WB (1987) The rheology of dilute suspensions of slender rods in weak flows. J Fluid Mech 180:475–494

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1977) Dynamics of polymeric liquids. Wiley, New York

    Google Scholar 

  • Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180

    Article  CAS  Google Scholar 

  • Chauveteau G, Sorbie K (1991) Mobility control by polymers. In: Bavière M (ed) Basic concepts in enhanced oil recovery processes. Elsevier, Amsterdam

    Google Scholar 

  • Davis VA, Ericson LM, Parra-Vasquez A, Fan H, Wang Y et al (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37:154–160

    Article  CAS  Google Scholar 

  • de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480

    Article  Google Scholar 

  • de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18:992–996

    Article  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of rod-like macromolecules in concentrated solution. J Chem Soc Faraday Trans 2(74):918–932

    Article  Google Scholar 

  • Dong X, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409

    Article  CAS  Google Scholar 

  • Dong X, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494

    Article  CAS  Google Scholar 

  • Edgar CD, Gray DG (2002) Influence of dextran on the phase behavior of suspensions of cellulose nanocrystals. Macromolecules 35:7400–7406

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner arbeit: eine neue bestimmung der molekuldimension. Ann Physik 34:591–592

    Article  CAS  Google Scholar 

  • Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066

    Article  CAS  Google Scholar 

  • Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213

    Article  CAS  Google Scholar 

  • Graessley WW (1967) Viscosity of entangling polydisperse polymers. J Chem Phys 47:1942–1953

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westmana G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502

    Article  CAS  Google Scholar 

  • Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49:323–334

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulose nanocomposites, review. BioResources 3:929–980

    Google Scholar 

  • Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12:548–550

    Article  CAS  Google Scholar 

  • Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575

    Article  CAS  Google Scholar 

  • Kapoor VP, Taravel FR, Joseleau JP, Milas M, Chanzy H et al (1998) Cassia spectabilis DC seed galactomannan: structural, crystallographical and rheological studies. Carbohydr Res 306:231–241

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456

    Article  CAS  Google Scholar 

  • Kuhn W, Kuhn H (1945) Die abhorigheit der viskositdt von stromungs- gefdlle bei hochverdunner suspensionen und losungen. Helv Chim Acta 28:97–127

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lee HC, Brant DA (2002a) Rheology of concentrated isotropic and anisotropic xanthan solutions. 1. A rodlike low molecular weight sample. Macromolecules 35:2212–2222

    Article  CAS  Google Scholar 

  • Lee HC, Brant DA (2002b) Rheology of concentrated isotropic and anisotropic xanthan solutions. 2. A semiflexible wormlike intermediate molecular weight sample. Macromolecules 35:2223–2234

    Article  CAS  Google Scholar 

  • Li J, Revol JF, Naranjo E, Marchessault RH (1996) Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int J Biol Macromol 18:177–187

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322

    Article  CAS  Google Scholar 

  • Lue A, Zhang L (2008) Investigation of the scaling law on cellulose solution prepared at low temperature. J Phys Chem B 112:4488–4495

    Article  CAS  Google Scholar 

  • Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JHT (2010) Effect of surface charge on the celluloar uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2:2924–2932

    Google Scholar 

  • Marrucci G Rheology of nematic polymers (1991) In: Ciferri A (ed) Liquid crystallinity in polymers: principles and fundamental properties. VCH, New York

  • Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Nijenhuis K, Winter HH (1989) Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution. Macromolecules 22:411–414

    Article  Google Scholar 

  • Onsager L (1932) Viscosity and particle shape in colloid solutions. Phys Rev 40:1028

    CAS  Google Scholar 

  • Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

  • Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858

    Article  CAS  Google Scholar 

  • Philipse AP, Verberkmoes A (1997) Statistical geometry of caging effects in random thin-rod structures. Phys A 235:186–193

    Article  Google Scholar 

  • Rånby BG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650

    Article  Google Scholar 

  • Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Rånby BG, Ribi E (1950) Über den Feinbau der Zullulose. Experimentia 6:12–14

    Article  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Sato T, Teramoto A (1991) Dynamics of stiff-chain polymers in isotropic solution: zero-shear viscosity of rodlike polymers. Macromolecules 24:193–196

    Article  CAS  Google Scholar 

  • Schubert BA, Kaler EW, Wagner NJ (2003) The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir 19:4079–4089

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Sittikijyothin W, Torres D, Gonçalves MP (2005) Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohydr Polym 59:339–350

    Article  CAS  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

    Article  Google Scholar 

  • Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8

    Article  Google Scholar 

  • Wierenga AM, Philipse AP (1998) Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres; a review of theory and experiments. Coll Surf A Physicochem Eng Aspects 137:355–372

    Article  CAS  Google Scholar 

  • Yang H, Tejado Á, Alam N, Antal M, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842

    Article  CAS  Google Scholar 

  • Zoppe JO, Österberg M, Venditti RA, Laine J, Rojas OJ (2011) Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes. Biomacromolecules 12:2788–2796

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by Alberta Innovates-BioSolutions (which includes the former Alberta Forestry Research Institute) and the National Natural Science Foundation of China (51203122). SEM measurements were performed at the National Institute for Nanotechnology of the National Research Council of Canada. We thank Dr. Christophe Danumah for the SEM micrographs, DLS and zeta potential measurements. We also thank Prof. Jeremy P. Richards for providing the polarized optical microscopy equipment in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaman Boluk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, A., Hemraz, U., Khalili, Z. et al. Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21, 1239–1250 (2014). https://doi.org/10.1007/s10570-014-0173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0173-y

Keywords

Navigation