Skip to main content

Advertisement

Log in

Catalytic mechanism and origin of high activity of cellulase TmCel12A at high temperature: a quantum mechanical/molecular mechanical study

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Understanding the factors that determine the catalytic efficiency of cellulases is of considerable importance in cellulosic ethanol production, especially at high temperature. The cellulase 12A from the hyperthermophile Thermotoga maritima (TmCel12A) is a possible candidate for accelerating the rate of hydrolysis via temperature elevation up to as high as 95 °C. However, the details of the catalytic mechanism and origin of the activity of TmCel12A at high temperature have not been well studied. Here, the enzyme-catalyzed reaction is explored using free energy simulations (potential of mean force) with umbrella sampling and quantum mechanical/molecular mechanical (SCC-DFTB/MM) potential at both relatively low (37 °C) and high (85 °C) temperatures. The free energy barriers for glycosylation and deglycosylation are calculated to be 22.5 ± 0.4 and 24.5 ± 0.7 kcal · mol−1 at 85 °C, respectively. The barrier for deglycosylation is found to decrease with increasing temperature or as a result of the Y61 → G mutation, consistent with experimental observations. The transition state for glycosylation and deglycosylation obtained from the simulations is in an oxocarbonium state with the −1 glucose ring having an E3 envelop (or 4H3 half-chair) conformation. A unique characteristic of the TmCel12A structure seems to be the existence of a stable moiety that may play a role in “holding” cellulose at the binding site with the correct orientation for the reaction even at 85 °C. This stable moiety (comprising hydrogen-bonded E116, E134, E227 and an active-site water molecule) may be one of the important factors for the relatively high activity of TmCel12A at high temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anbar M, Gul O, Lamed R, Sezerman UO, Bayer EA (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microb 78(9):3458–3464

    Article  CAS  Google Scholar 

  • Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microb 77(23):8288–8294

    Article  CAS  Google Scholar 

  • Banerjee A, Yang W, Karplus M, Verdine GL (2005) Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434(7033):612–618

    Article  CAS  Google Scholar 

  • Barnett CB, Naidoo KJ (2010) Ring puckering: a metric for evaluating the accuracy of AM1, PM3, PM3CARB-1, and SCC-DFTB carbohydrate QM/MM simulations. J Phys Chem B 114(51):17142–17154. doi:10.1021/jp107620h

    Article  CAS  Google Scholar 

  • Barnett CB, Wilkinson KA, Naidoo KJ (2010) Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization. J Am Chem Soc 132(37):12800–12803. doi:10.1021/ja103766w

    Article  CAS  Google Scholar 

  • Barnett CB, Wilkinson KA, Naidoo KJ (2011) Molecular details from computational reaction dynamics for the cellobiohydrolase I glycosylation reaction. J Am Chem Soc 133(48):19474–19482

    Article  CAS  Google Scholar 

  • Biarnes X, Ardevol A, Planas A, Rovira C, Laio A, Parrinello M (2007) The conformational free energy landscape of beta-D-glucopyranose. Implications for substrate preactivation in beta-glucoside hydrolases. J Am Chem Soc 129(35):10686–10693. doi:10.1021/ja068411o

    Article  CAS  Google Scholar 

  • Bondar AN, Elstner M, Suhai S, Smith JC, Fischer S (2004) Mechanism of primary proton transfer in bacteriorhodopsin. Structure 12(7):1281–1288

    Article  CAS  Google Scholar 

  • Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microb 61(4):1399–1407

    CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    Article  CAS  Google Scholar 

  • Brooks CL, Brunger A, Karplus M (1985) Active-site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers 24(5):843–865

    Article  CAS  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  Google Scholar 

  • Cheng YS, Ko TP, Huang JW, Wu TH, Lin CY, Luo WH, Li Q, Ma YH, Huang CH, Wang AHJ, Liu JR, Guo RT (2012) Enhanced activity of Thermotoga maritima cellulase 12A by mutating a unique surface loop. Appl Microbiol Biotechnol 95(3):661–669

    Article  CAS  Google Scholar 

  • Choi TH, Liang R, Maupin CM, Voth GA (2013) Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. J Phys Chem B 117(17):5165–5179. doi:10.1021/jp400953a

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  Google Scholar 

  • Davies GJ, Ducros VMA, Varrot A, Zechel DL (2003) Mapping the conformational itinerary of beta-glycosidases by X-ray crystallography. Biochem Soc Trans 31:523–527

    Article  CAS  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1):124–154

    Article  CAS  Google Scholar 

  • Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58(11):7260–7268

    Article  CAS  Google Scholar 

  • Elstner M, Frauenheim T, Suhai S (2003) An approximate DFT method for QM/MM simulations of biological structures and processes. J Mol Struct THEOCHEM 632:29–41

    Article  CAS  Google Scholar 

  • Gaus M, Cui QA, Elstner M (2011) DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J Chem Theory Comput 7(4):931–948

    Article  CAS  Google Scholar 

  • Guo H, Cui Q, Lipscomb WN, Karplus M (2001) Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism. Proc Natl Acad Sci USA 98(16):9032–9037

    Article  CAS  Google Scholar 

  • Guo HB, Rao N, Xu Q, Guo H (2005a) Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: implications for enzyme catalysis. J Am Chem Soc 127(9):3191–3197

    Article  CAS  Google Scholar 

  • Guo HB, Wlodawer A, Guo H (2005b) A general acid–base mechanism for the stabilization of a tetrahedral adduct in a serine-carboxyl peptidase: a computational study. J Am Chem Soc 127(45):15662–15663. doi:10.1021/ja0520565

    Article  CAS  Google Scholar 

  • Guo HB, Wlodawer A, Nakayama T, Xu Q, Guo H (2006) Catalytic role of proton transfers in the formation of a tetrahedral adduct in a serine carboxyl peptidase. Biochemistry 45(30):9129–9137

    Article  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10(4):358–364

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  Google Scholar 

  • Ionescu AR, Berces A, Zgierski MZ, Whitfield DM, Nukada T (2005) Conformational pathways of saturated six-membered rings. A static and dynamical density functional study. J Phys Chem A 109(36):8096–8105

    Article  CAS  Google Scholar 

  • Islam SM, Roy P-N (2012) Performance of the SCC-DFTB model for description of five-membered ring carbohydrate conformations: comparison to force fields, high-level electronic structure methods, and experiment. J Chem Theory Comput 8(7):2412–2423

    Article  CAS  Google Scholar 

  • Javed MM, Ikram-ul-Haq, Mariyam I (2011) Multistep Mutagenesis for the over-expression of cellulase in Humicola insolens. Pak J Bot 43(1):669–677

    CAS  Google Scholar 

  • Jeffrey GA, Yates JH (1979) Stereographic representation of the Cremer-Pople ring-puckering parameters for pyranoid rings. Carbohyd Res 74:319–322

    Article  CAS  Google Scholar 

  • Jorgensen WL (1981) Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers: application to liquid water. J Am Chem Soc 103(2):335–340

    Article  CAS  Google Scholar 

  • Kang HJ, Uegaki K, Fukada H, Ishikawa K (2007) Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles 11(2):251–256

    Article  CAS  Google Scholar 

  • Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  Google Scholar 

  • Lee CY, Yu KO, Kim SW, Han SO (2010) Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE. J Biosci Bioeng 109(4):331–336

    Article  CAS  Google Scholar 

  • Li GH, Cui Q (2003) What is so special about Arg 55 in the catalysis of cyclophilin A? Insights from hybrid QM/MM simulations. J Am Chem Soc 125(49):15028–15038

    Article  CAS  Google Scholar 

  • Liang CN, Fioroni M, Rodriguez-Ropero F, Xue YF, Schwaneberg U, Ma YH (2011a) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154(1):46–53

    Article  CAS  Google Scholar 

  • Liang CN, Xue YF, Fioroni M, Rodriguez-Ropero F, Zhou C, Schwaneberg U, Ma YH (2011b) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89(2):315–326

    Article  CAS  Google Scholar 

  • Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I (1996) Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology 142:2533–2542

    Article  CAS  Google Scholar 

  • Liu JL, Wang XM, Xu DG (2010) QM/MM study on the catalytic mechanism of cellulose hydrolysis catalyzed by cellulase Cel5A from Acidothermus cellulolyticus. J Phys Chem B 114(3):1462–1470. doi:10.1021/jp909177e

    Article  CAS  Google Scholar 

  • Liu JR, Cheng YS, Ko TP, Wu TH, Ma YH, Huang CH, Lai HL, Wang AHJ, Guo RT (2011) Crystal structure and substrate-binding mode of cellulase 12A from Thermotoga maritima. Proteins 79(4):1193–1204

    Article  CAS  Google Scholar 

  • Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415

    Article  CAS  Google Scholar 

  • Maupin CM, Aradi B, Voth GA (2010) The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. J Phys Chem B 114(20):6922–6931. doi:10.1021/jp1010555

    Article  CAS  Google Scholar 

  • Murashima K, Kosugi A, Doi RH (2002) Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol Microbiol 45(3):617–626

    Article  CAS  Google Scholar 

  • Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y (2009) Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol 83(4):649–657

    Article  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson LD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323–329

    Article  CAS  Google Scholar 

  • Niehaus TA, Elstner M, Frauenheim T, Suhai S (2001) Application of an approximate density-functional method to sulfur containing compounds. J Mol Struct (Thoechem) 541(1):185–194

    Article  CAS  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(D1):D290–D301

    Article  CAS  Google Scholar 

  • Riccardi D, Konig P, Guo H, Cui Q (2008) Proton transfer in carbonic anhydrase is controlled by electrostatics rather than the orientation of the acceptor. Biochemistry 47(8):2369–2378

    Article  CAS  Google Scholar 

  • Saharay M, Guo H, Smith JC (2010) Catalytic mechanism of cellulose degradation by a cellobiohydrolase, CelS. PLoS ONE 5(10):e12947. doi:10.1371/journal.pone.0012947

  • Sattelle BM, Almond A (2010) Less is more when simulating unsulfated glycosaminoglycan 3D-structure: comparison of GLYCAM06/TIP3P, PM3-CARB1/TIP3P, and SCC-DFTB-D/TIP3P predictions with experiment. J Comput Chem 31(16):2932–2947. doi:10.1002/jcc.21589

    CAS  Google Scholar 

  • Sattelmeyer KW, Tirado-Rives J, Jorgensen WL (2006) Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules. J Phys Chem A 110(50):13551–13559

    Article  CAS  Google Scholar 

  • Schou C, Rasmussen G, Kaltoft MB, Henrissat B, Schulein M (1993) Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by 9 cellulases. Eur J Biochem 217(3):947–953

    Article  CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105(37):13769–13774

    Article  Google Scholar 

  • Srikrishnan S, Randall A, Baldi P, Da Silva NA (2012) Rationally selected single-site mutants of the Thermoascus aurantiacus endoglucanase increase hydrolytic activity on cellulosic substrates. Biotechnol Bioeng 109(6):1595–1599

    Article  CAS  Google Scholar 

  • Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using non-Boltzmann sampling: application to subcritical Lennard-Jones fluid. Chem Phys Lett 28(4):578–581

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43

    Article  CAS  Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145

    CAS  Google Scholar 

  • Volfova O, Suchardova O, Panos J, Krumphanzl V (1985) Ethanol formation from cellulose by thermophilic bacteria. Appl Microbiol Biotechnol 22(4):246–248

    Article  CAS  Google Scholar 

  • Xu Q, Guo H, Wlodawer A, Guo H (2006) The importance of dynamics in substrate-assisted catalysis and specificity. J Am Chem Soc 128(18):5994–5995

    Article  CAS  Google Scholar 

  • Xue DS, Chen HY, Ren YR, Yao SJ (2012) Enhancing the activity and thermostability of thermostable beta-glucosidase from a marine Aspergillus niger at high salinity. Process Biochem 47(4):606–611

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95

    Article  CAS  Google Scholar 

  • Yang Y, Yu H, York D, Elstner M, Cui Q (2008) Description of phosphate hydrolysis reactions with the self-consistent-charge density-functional-tight-binding (SCC-DFTB) theory. 1. Parameterization. J Chem Theory Comput 4(12):2067–2084. doi:10.1021/ct800330d

    Article  CAS  Google Scholar 

  • Yi ZL, Pei XQ, Wu ZL (2011) Introduction of glycine and proline residues onto protein surface increases the thermostability of endoglucanase CelA from Clostridium thermocellum. Bioresour Technol 102(3):3636–3638

    Article  CAS  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Science Foundation Award (Grant No. 0817940 to H.G.) and in part by grants from the National High-Tech R&D Program (863 Program Contract No. 2012AA020307 to D.Q.W.), the National Basic Research Program of China (973 Program) (Contract No. 2012CB721000 to D.Q.W.), and the Key Project of Shanghai Science and Technology Commission (Contract No. 11JC1406400 to D.Q.W.). P.L. is supported by a fellowship from Shanghai Jiao Tong University. JCS acknowledges support from the Bioenergy Science Center, funded by Biological and Environmental Research in the Office of Science of the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Qing Wei or Hong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, P., Guo, HB., Smith, J.C. et al. Catalytic mechanism and origin of high activity of cellulase TmCel12A at high temperature: a quantum mechanical/molecular mechanical study. Cellulose 21, 937–949 (2014). https://doi.org/10.1007/s10570-013-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0011-7

Keywords

Navigation