Skip to main content

Advertisement

Log in

Catalytic Adventures in Space and Time Using High Energy X-rays

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Very high energy X-rays (ca. >40 keV) have long offered great promise in providing great insight into the inner workings of catalysts; insights that may complement the battery of techniques available to researchers in catalysis either in the laboratory or at more conventional X-ray wavelengths. This contribution aims to critically assess the diverse possibilities now available in the high energy domain as a result of the maturation of third generation synchrotron facilities and to look forward to the potential that forthcoming developments in synchrotron source technology may offer the world of catalysis in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. See also the contents of this special issue of Phys. Chem. Chem. Phys. for exemplars covering a wide range of applications to various aspects of materials chemistry as well as catalysis. See reference [2].

  2. We note here the elegant work of Stierle and co-workers which again strongly favours the use of high energy X-rays. Their approach resolves very detailed aspects of particle and surface oxide structure via the use of well faceted and aligned nanoparticles supported upon planar oxide substrates. Along with bulk Bragg peaks they are also able to observe surface truncation rods and therefore accurately reconstruct nanoparticle structures and morphologies. See Ref [49].

References

  1. Petkov V (2008) Mater Today 11:28

    Article  CAS  Google Scholar 

  2. Newton MA (2013) Phys Chem Chem Phys 15:8458

    Article  CAS  Google Scholar 

  3. Gallezot P (1984) X-ray techniques in catalysis. Catalysis 5:221–273

    Google Scholar 

  4. Nagai Y, Dohmae K, Nishimura YF, Kato H, Hirata H, Takahashi N (2013) Phys Chem Chem Phys 15:8461–8465

    Article  CAS  Google Scholar 

  5. Voronov A, Tsakoumis NE, Hammer N, Van Beek W, Emmerich H, Ronning M (2014) Catal Today 229:23–33

    Article  CAS  Google Scholar 

  6. Ghigna P, Spinolo G (2015) Sci Adv Mater (in press)

  7. Chupas PJ, Chapman KW, Lee PL (2007) J Appl Cryst 40:463

    Article  CAS  Google Scholar 

  8. Daniels JE, Drakopoulos M (2009) J Synchrotron Radiat 16:463

    Article  CAS  Google Scholar 

  9. Newton MA, Di Michiel M, Kubacka A, Fernández-García M (2010) J Am Chem Soc 132:4540

    Article  CAS  Google Scholar 

  10. Beyer KA, Zhao H, Borkiewicz OJ, Newton MA, Chupas PJ, Chapman KW (2014) J Appl Cryst 47:483

    Article  Google Scholar 

  11. Chapman KW, Beyer KA, Zhao HY, Chupas PJ (2013) CrystEngComm 15:9377

    Article  CAS  Google Scholar 

  12. Hanson JC, Si T, Xu W, Senanayke SD, Mudivanselage K, Stacchiola D, Rodriguez JA, Zhao H, Beyer KA, Jennings G, Chapman KW, Chupas PJ, Martinez-Arias A (2014) Catal Today 229:64

    Article  CAS  Google Scholar 

  13. Di Monte R, Kaspar J (2005) J Mater Chem 15:633

  14. Yamamoto T, Suzuki A, Nagai Y, Tanabe T, Dong F, Inada Y, Nomura M, Tada M, Iwasawa Y (2007) Angew Chem Intl Ed 46:9253

    Article  CAS  Google Scholar 

  15. Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugira M (2008) Top Catal 47:137

    Article  CAS  Google Scholar 

  16. Kubacka A, Martínez-Arias A, Fernández-García M, Di Michiel M, Newton MA (2010) J Catal 270:275

    Article  CAS  Google Scholar 

  17. Newton MA, Di Michiel M, Kubacka A, Iglesias-Juez A, Fernández-García M (2012) Angew Chem Intl Ed 51:2363

    Article  CAS  Google Scholar 

  18. Fernandez-Garcia M, Iglesias-Juez A, Martinez-Arias A, Figueroa S, Newton MA, Di Michiel M, Fernandez-Garcia M (2012) ChemCatChem 4:725

    Article  Google Scholar 

  19. Ferri D, Newton MA, Di Michiel M, Yoon S, Chiarello GL, Marchionni V, Matam SK, Aquirre MH, Wedenkaff A, Wen F, Gieshoff J (2012) Phys Chem Chem Phys 15:8629

    Article  Google Scholar 

  20. Bounechada D, Fouladvand S, Kylhammer L, Pingel T, Olsson E, Skoglundh M, Gustafson J, Di Michiel M, Newton MA, Carlsson PA (2013) Phys Chem Chem Phys 15:8648

    Article  CAS  Google Scholar 

  21. Lu Y, Marchionni V, Chiarello GL, Pappacena A, Di Michiel M, Newton MA, Weidenkaff A, Ferri D (2014) Catal Sci Tech 4:2919

    Article  CAS  Google Scholar 

  22. Ferri D, Newton MA, Di Michiel M, Luca Chiarello G, Yoon S, Lu Y, Andrieux J (2014) Angew Chem Intl Ed 53:8890

    Article  CAS  Google Scholar 

  23. Morgensen M (2002) In: Trovarelli A (ed) Catalysis by Ceria and related materials. Imperial College Press, London, pp 453–482

    Chapter  Google Scholar 

  24. Achery SN, Sali SK, Kulkarni NK, Krishna PSR, Shinde AB, Tyagi AK (2009) Chem Mater 21:5848

    Article  Google Scholar 

  25. Baurecht D, Fringeli UP (2001) Rev. Sci. Instr. 72:3782

    Article  CAS  Google Scholar 

  26. Bürgi T, Baiker A (2002) J Phys Chem B 106:10649

    Article  Google Scholar 

  27. Bürgi T, Baiker A (2006) Adv Catal 50:227

    Google Scholar 

  28. Bürgi T, Wirz R, Baiker A (2003) J Phys Chem B 107:6774

    Article  Google Scholar 

  29. Urakawa A, Bürgi T, Baiker A (2008) Chem Eng Sci 63:4902

    Article  CAS  Google Scholar 

  30. Cavers M, Davidson JM, Harkness IR, Rees LVC, McDougall GSM (1999) J Catal 188:426

    Article  CAS  Google Scholar 

  31. Ferri D, Kumar MS, Eyssler A, Korsak O, Hug P, Weidenkaff A, Newton MA (2010) Phys Chem Chem Phys 12:5634

    Article  CAS  Google Scholar 

  32. Ferri D, Newton MA, Nachtegaal M (2011) Top Catal 54:1070

    Article  CAS  Google Scholar 

  33. Eyssler A, Kleymenov E, Kupferschmid A, Nachtegaal M, Kumar MS, Hug P, Weidenkaff A, Ferri D (2011) J Phys Chem C 115:1231

    Article  CAS  Google Scholar 

  34. Konig CFJ, Van Bokhoven JA, Schildhauer TJ, Nachtegaal M (2012) J Phys Chem C 116:19857

    Article  CAS  Google Scholar 

  35. Marchionni V, Newton MA, Kambolis A, Kumar SM, Weidenkaff A, Ferri D (2014) Catal Today 229:80

    Article  CAS  Google Scholar 

  36. Chupas PJ, Chapman KW, Chen HL, Grey CP (2009) Catal Today 145:213

    Article  CAS  Google Scholar 

  37. Daniels JE, Pontoni D, Hoo RP, Honkimaki V (2010) J Synchrotron Radiat 17:473

    Article  CAS  Google Scholar 

  38. Labiche J-C, Mathon O, Pascarelli S, Newton MA, Guilera Ferre G, Curfs C, Vaughan G, Homs A, Fernandez Carreiras D (2007) Rev Sci Instrum 78:091301

    Article  Google Scholar 

  39. Billinge SJ, Levin I (2007) Science 316:561

    Article  CAS  Google Scholar 

  40. Chupas PJ, Chapman KW, Jennings G, Lee PL, Grey CP (2007) J Am Chem Soc 129:13822

    Article  CAS  Google Scholar 

  41. Zhao HY, Nenoff TM, Jennings G, Chupas PJ, Chapman KW (2011) J Phys Chem Lett 2:2742

    Article  CAS  Google Scholar 

  42. Zhao HY, Chupas PJ, Chapman KW (2012) Z Fur Kristallog 227:268

    Article  CAS  Google Scholar 

  43. Du PW, Kokhan O, Chapman KW, Chupas PJ, Tiede DM (2012) J Am Chem Soc 134:11096

    Article  CAS  Google Scholar 

  44. Newton MA, Chapman KW, Thompsett D, Chupas PJ (2012) J Am Chem Soc 134:5036

    Article  CAS  Google Scholar 

  45. Chupas PJ, Chapman KW, Kurtz C, Hanson JC, Lee PL, Grey CP (2008) J Appl Cryst 41:822

    Article  CAS  Google Scholar 

  46. Hendriksen BLM, Frenken JMW (2002) Phys Rev Lett 89:046101

    Article  CAS  Google Scholar 

  47. Iglesias-Juez A, Kubacka A, Fernandez-Garcia M, Di Michiel M, Newton MA (2011) J Am Chem Soc 133:4484

    Article  CAS  Google Scholar 

  48. Liang KS, Laderman SS, Sinfelt JH (1987) J Chem Phys 86:2352

    Article  CAS  Google Scholar 

  49. Nolte P, Stierle A, Kasper N, Jin-Philipp NY, Reichert H, Ruhm A, Okasinski J, Dosch H, Schoder S (2008) Phys Rev B 77:115444

    Article  Google Scholar 

  50. Ruffino L, Mann R, Oldman R, Stitt EH, Boller E, Cloetens P, Di Michiel M, Merino J (2005) Can J Chem Eng 83:132

    Article  CAS  Google Scholar 

  51. Hall C, Barnes P, Cockcroft JK, Jacques SDM, Jupe AC, Turrillas X, Hanfland M, Hausermann D (1996) Anal Commun 33:245

    Article  CAS  Google Scholar 

  52. Beale AM, Jacques SDM, Bergwerff JA, Barnes P, Weckhuysen BM (2007) Angew Intl Ed 46:8832

    Article  CAS  Google Scholar 

  53. Espinosa-Alonso L, Obrien MG, Jacques SDM, Beale AM, De Jong KP, Barnes P, Weckhuysen BM (2009) J Am Chem Soc 131:16392

    Article  Google Scholar 

  54. Jacques SDM, Di Michiel M, Beale AM, Sochi T, O’Brien MG, Espinosa-Alonso L, Weckhuysen BM, Barnes P (2011) Angew Chem Int Ed 50:10148

    Article  CAS  Google Scholar 

  55. O’Brien MG, Beale AM, Jacques SDM, Di Michiel M, Weckhuysen BM (2011) Appl Catal A 391:468

    Article  Google Scholar 

  56. O’Brien MG, Jacques SDM, Di Michiel M, Barnes P, Weckhuysen BM, Beale AM (2012) Chem Sci 2:509

    Article  Google Scholar 

  57. Gibson EK, Zandbergen MW, Jacques SDM, Biao C, Cernik RJ, O’Brien MG, Di Michiel M, Weckhuysen BM, Beale AM (2013) ACS Catal 3:339

    Article  CAS  Google Scholar 

  58. Jacques SDM, Di Michiel M, Kimber SAJ, Yang XH, Cernik RJ, Beale AM, Billinge SJL (2013) Nat Commun 4:2536

    Article  Google Scholar 

  59. Beale AM, Gibson EK, O’Brien MG, Jacques SDM, Cernik RJ, Di Michiel M, Cobden PD, Pirgon-Galin O, Van der Water L, Watson MJ (2014) J Catal 314:94

    Article  CAS  Google Scholar 

  60. Beale AM, Jacques SDM, Gibson EK, Dimichiel M (2014) Coord Chem Rev. doi:10.1016/j.ccr.2014.05.008

    Google Scholar 

  61. http://www.diamond.ac.uk/Beamlines/Engineering-and-Environment/I15.html. Accessed 11 Sept 2014

  62. See http://www.diamond.ac.uk/Beamlines/Engineering-and-Environment/I12.html. Accessed 11 Sept 2014

  63. See http://www.bnl.gov/ps/nsls2/beamlines/overviews/XPD.asp. Accessed 11 Sept 2014

  64. Vaughan GBM, Wright JP, Bytchkov A, Rossat M, Gleyzolle H, Snigireva I, Snigirev A (2011) J Synchrotron Rad 18:125

    Article  Google Scholar 

  65. Chupas PJ, Qiu XY, Hanson JC, Lee PL, Grey CP, Billinge SL (2003) J Appl Cryst 36:1342

    Article  CAS  Google Scholar 

  66. Kraft P, Bergamaschi A, Broenimann C, Dinapoli R, Eikenberry EF, Henrich B, Johnson I, Mozzanica A, Schlepütz CM, Wilmott PR, Schmitt B (2009) J Synchrotron Rad 16:368

    Article  CAS  Google Scholar 

  67. Abdala PM, Mauroy H, Van Beek W (2014) J Appl Cryst 47:449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We should like to thank the ESRF and the APS for access to the facilities required to make the measurements reported in this review. MAN would like to thank the Royal Society of Chemistry for a journals Grant (09 01 639) that permitted the work PDF work reported here to be undertaken and the APS for a visiting scientist position that permitted the collaborative development of a combined PDF/DRIFTS experiment to be achieved. He should also like to thank all the other authors for putting up with him as long as they have. SDMJ and AMB would like to thank both NWO (NL) and EPSRC (UK) for funding to perform the high energy scattering experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newton, M.A., Di Michiel, M., Ferri, D. et al. Catalytic Adventures in Space and Time Using High Energy X-rays. Catal Surv Asia 18, 134–148 (2014). https://doi.org/10.1007/s10563-014-9173-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-014-9173-z

Keywords

Navigation