Skip to main content
Log in

Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Core–shell heterostructures have been utilized as a catalyst that is thermally stable and exhibits a synergistic effect between core and shell, resulting in increased catalytic activity. Here we report on the synthetic procedure involving a Au144 core with an iron oxide shell which can be varied in thickness. The Au144@Fe2O3 particles with Au:Fe mass ratios of 1:2, 1:4, and 1:6 were synthesized and then deposited onto silica via colloidal deposition. Using CO oxidation, each Au144@Fe2O3/SiO2 catalyst gave varying degrees of full CO conversion depending on the thickness of the iron oxide layer. The 1:4 Au144@Fe2O3/SiO2 catalyst produced the best catalytic activity and was further investigated via thermal treatments, where calcination at 300 °C presented the best results, and the 1:4 ratio was still active at 100 °C after thermal treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carbon dioxide Atlanta, GA [cited CDC Centers for Disease Control and Prevention]. http://www.cdc.gov/niosh/npg/npgd0103.html

  2. Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ Sci 5(10):8937–8941

    Article  CAS  Google Scholar 

  3. Chen L, Chang B-K, Lu Y, Yang W, Tatarchuk BJ (2002) Selective catalytic oxidation of CO for fuel cell application. Fuel Chem Div Prepr 47(2):609–610

    CAS  Google Scholar 

  4. Kandoi S, Gokhale A, Grabow L, Dumesic J, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett 93(1–2):93–100

    Article  CAS  Google Scholar 

  5. Tsuchida E, Sato H (1990) Recovery of transient gain in an open-cycle FAF CO2 laser amplifier using gold catalyst. Jpn J Appl Phys 29(6A):L964

    Article  CAS  Google Scholar 

  6. Levine R, Vitruk P, MlnstP C (2015) Laser-assisted operculectomy. Compend Contin Educ Dent 36:561–567

    PubMed  Google Scholar 

  7. Ando M, Kobayashi T, Iijima S, Haruta M (1997) Optical recognition of CO and H2 by use of gas-sensitive Au–Co3O4 composite films. J Mater Chem 7(9):1779–1783

    Article  CAS  Google Scholar 

  8. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0. DEG. C. Chem Lett 16(2):405–408

    Article  Google Scholar 

  9. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  CAS  PubMed  Google Scholar 

  10. Bond GC (2011) The effect of the metal to non-metal transition on the activity of gold catalysts. Faraday Discuss 152:277–291

    Article  CAS  PubMed  Google Scholar 

  11. Ponec V, Bond GC (1995) Catalysis by metals and alloys. Elsevier, Amsterdam

    Google Scholar 

  12. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. World Scientific, Singapore

    Book  Google Scholar 

  13. Kovala-Demertzi D, Hadjikakou SK, Demertzis MA, Deligiannakis Y (1998) Metal ion–drug interactions. Preparation and properties of manganese (II), cobalt (II) and nickel (II) complexes of diclofenac with potentially interesting anti-inflammatory activity: behavior in the oxidation of 3, 5-di-tert-butyl-o-catechol. J Inorg Biochem 69(4):223–229

    Article  CAS  Google Scholar 

  14. Overbury S, Schwartz V, Mullins DR, Yan W, Dai S (2006) Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. J Catal 241(1):56–65

    Article  CAS  Google Scholar 

  15. Che M, Bennett CO (1989) The influence of particle size on the catalytic properties of supported metals. Adv Catal 36:55–172

    CAS  Google Scholar 

  16. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. https://doi.org/10.1039/C39940000801

    Article  Google Scholar 

  17. Chen T, Luo Z, Yao Q, Yeo AXH, Xie J (2016) Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. Chem Commun 52(61):9522–9525

    Article  CAS  Google Scholar 

  18. Azubel M, Kornberg RD (2016) Synthesis of water-soluble, thiolate-protected gold nanoparticles uniform in size. Nano Lett 16(5):3348–3351

    Article  CAS  PubMed  Google Scholar 

  19. Qian H, Jin R (2011) Ambient synthesis of Au144(SR)60 nanoclusters in methanol. Chem Mater 23(8):2209–2217

    Article  CAS  Google Scholar 

  20. Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold: alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130(27):8608–8610

    Article  CAS  PubMed  Google Scholar 

  21. Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A et al (2010) Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett 1(19):2903–2910

    Article  CAS  Google Scholar 

  22. Liu J, Jian N, Ornelas I, Pattison AJ, Lahtinen T, Salorinne K et al (2017) Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM. Ultramicroscopy 176:146–150

    Article  CAS  PubMed  Google Scholar 

  23. Guryanov I, Polo F, Ubyvovk EV, Korzhikova-Vlakh E, Tennikova T, Rad AT et al (2017) Polylysine-grafted Au144 nanoclusters: birth and growth of a healthy surface-plasmon-resonance-like band. Chem Sci 8(4):3228–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45(9):1470–1479

    Article  CAS  PubMed  Google Scholar 

  25. Bahena D, Bhattarai N, Santiago U, Tlahuice A, Ponce A, Bach SB et al (2013) STEM electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster. J Phys Chem Lett 4(6):975–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MacDonald MA, Zhang P, Qian H, Jin R (2010) Site-specific and size-dependent bonding of compositionally precise gold–thiolate nanoparticles from X-ray spectroscopy. J Phys Chem Lett 1(12):1821–1825

    Article  CAS  Google Scholar 

  27. Weissker H-C, Escobar HB, Thanthirige V, Kwak K, Lee D, Ramakrishna G et al (2014) Information on quantum states pervades the visible spectrum of the ubiquitous Au144(SR)60 gold nanocluster. Nat Commun 5:3785

    Article  PubMed  Google Scholar 

  28. Haruta M (2011) Spiers memorial lecture role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss 152:11–32

    Article  CAS  PubMed  Google Scholar 

  29. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6(3):102–115

    Article  CAS  Google Scholar 

  30. Hill AF (2002) Organotransition metal chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  31. Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A 2(18):6266–6291

    Article  CAS  Google Scholar 

  32. Lin F-h, Doong R-a (2011) Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115(14):6591–6598

    Article  CAS  Google Scholar 

  33. Yin H, Ma Z, Chi M, Dai S (2011) Heterostructured catalysts prepared by dispersing Au@Fe2O3 core–shell structures on supports and their performance in CO oxidation. Catal Today 160(1):87–95

    Article  CAS  Google Scholar 

  34. Zhuang Z, Sheng W, Yan Y (2014) Synthesis of monodisperse Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv Mater 26(23):3950–3955

    Article  CAS  PubMed  Google Scholar 

  35. Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5(6):1456–1462

    Article  CAS  Google Scholar 

  36. Janardhanan VM, Deutschmann O (2006) CFD analysis of a solid oxide fuel cell with internal reforming: coupled interactions of transport, heterogeneous catalysis and electrochemical processes. J Power Sources 162(2):1192–1202

    Article  CAS  Google Scholar 

  37. Zhu H, Sigdel A, Zhang S, Su D, Xi Z, Li Q et al (2014) Core/shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angew Chem 126(46):12716–12720

    Article  Google Scholar 

  38. Zhu Z, Chang J-L, Wu R-J (2015) Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature. Sens Actuators B 214:56–62

    Article  CAS  Google Scholar 

  39. Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K (2015) One-step synthesis of core-gold/shell-ceria nano-material and its catalysis for highly selective semihydrogenation of alkynes. J Am Chem Soc 137:13452–13455

    Article  CAS  PubMed  Google Scholar 

  40. Wei Y, Zhao Z, Yu X, Jin B, Liu J, Xu C et al (2013) One-pot synthesis of core–shell Au@CeO2−δ nanoparticles supported on three-dimensionally ordered macroporous ZrO2 with enhanced catalytic activity and stability for soot combustion. Catal Sci Technol 3(11):2958–2970

    Article  CAS  Google Scholar 

  41. Jiang G, Huang Y, Zhang S, Zhu H, Wu Z, Sun S (2016) Controlled synthesis of Au–Fe heterodimer nanoparticles and their conversion into Au–Fe3O4 heterostructured nanoparticles. Nanoscale 8(41):17947–17952

    Article  CAS  PubMed  Google Scholar 

  42. Jiang W, Zhou Y, Zhang Y, Xuan S, Gong X (2012) Superparamagnetic Ag@Fe3O4 core–shell nanospheres: fabrication, characterization and application as reusable nanocatalysts. Dalton Trans 41(15):4594–4601

    Article  CAS  PubMed  Google Scholar 

  43. Teng X, Black D, Watkins NJ, Gao Y, Yang H (2003) Platinum-maghemite core–shell nanoparticles using a sequential synthesis. Nano Lett 3(2):261–264

    Article  CAS  Google Scholar 

  44. Lin K-C, del Valle C, Huang Y-F (eds) (2014) Synthesis of gold@ iron oxide core-shell nanostructures via an electrochemical procedure. In: Meeting Abstracts. The Electrochemical Society

  45. Shevchenko EV, Bodnarchuk MI, Kovalenko MV, Talapin DV, Smith RK, Aloni S et al (2008) Gold/iron oxide core/hollow-shell nanoparticles. Adv Mater 20(22):4323–4329

    Article  CAS  Google Scholar 

  46. Tang Z, Zhang W, Li Y, Huang Z, Guo H, Wu F et al (2016) Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde. Appl Surf Sci 364:75–80

    Article  CAS  Google Scholar 

  47. Kang Y, Ye X, Chen J, Qi L, Diaz RE, Doan-Nguyen V et al (2013) Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation. J Am Chem Soc 135(4):1499–1505

    Article  CAS  PubMed  Google Scholar 

  48. Kothalawala N, Kumara C, Ferrando R, Dass A (2013) Au144−xPdx(SR)60 nanomolecules. Chem Commun 49(92):10850–10852

    Article  CAS  Google Scholar 

  49. dell’Erba IE, Hoppe CE, Williams RJJ (2012) Films of covalently bonded gold nanoparticles synthesized by a sol–gel process. J Nanopart Res 14(9):1–8

    Article  Google Scholar 

  50. Arnal PM, Comotti M, Schüth F (2006) High-temperature-stable catalysts by hollow sphere encapsulation. Angew Chem 118(48):8404–8407

    Article  Google Scholar 

  51. Galeano C, Güttel R, Paul M, Arnal P, Lu AH, Schüth F (2011) Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example. Chem Eur J 17(30):8434–8439

    Article  CAS  PubMed  Google Scholar 

  52. Fan C-M, Zhang L-F, Wang S-S, Wang D-H, Lu L-Q, Xu A-W (2012) Novel CeO2 yolk–shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. Nanoscale 4(21):6835–6840

    Article  CAS  PubMed  Google Scholar 

  53. Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A (2015) Highly active Au-CeO2@ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl Catal B 166:518–528

    Article  CAS  Google Scholar 

  54. Wang S, Zhang M, Zhang W (2011) Yolk–Shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1(3):207–211

    Article  CAS  Google Scholar 

  55. Huang C-C, Yang Z, Chang H-T (2004) Synthesis of dumbbell-shaped Au–Ag core–shell nanorods by seed-mediated growth under alkaline conditions. Langmuir 20(15):6089–6092

    Article  CAS  PubMed  Google Scholar 

  56. Han CW, Choksi T, Milligan C, Majumdar P, Manto M, Cui Y et al (2017) A discovery of strong metal–support bonding in nanoengineered Au–Fe3O4 dumbbell-like nanoparticles by in situ transmission electron microscopy. Nano Lett 17(8):4576–4582

    Article  CAS  PubMed  Google Scholar 

  57. Wojcieszak R, Genet M, Eloy P, Ruiz P, Gaigneaux E (2010) Determination of the size of supported Pd nanoparticles by X-ray photoelectron spectroscopy. Comparison with X-ray diffraction, transmission electron microscopy, and H2 chemisorption methods. J Phys Chem C 114(39):16677–16684

    Article  CAS  Google Scholar 

  58. Visco A (1999) X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts. Phys Chem Chem Phys 1(11):2869–2873

    Article  CAS  Google Scholar 

  59. Figueiredo N, Carvalho N, Cavaleiro A (2011) An XPS study of Au alloyed Al–O sputtered coatings. Appl Surf Sci 257(13):5793–5798

    Article  CAS  Google Scholar 

  60. Kruse N, Chenakin S (2011) XPS characterization of Au/TiO2 catalysts: binding energy assessment and irradiation effects. Appl Catal A 391(1–2):367–376

    Article  CAS  Google Scholar 

  61. Peters S, Peredkov S, Neeb M, Eberhardt W, Al-Hada M (2013) Size-dependent XPS spectra of small supported Au-clusters. Surf Sci 608:129–134

    Article  CAS  Google Scholar 

  62. Anderson DP, Alvino JF, Gentleman A, Al Qahtani H, Thomsen L, Polson MI et al (2013) Chemically-synthesised, atomically-precise gold clusters deposited and activated on titania. Phys Chem Chem Phys 15(11):3917–3929

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki S, Yanagihara K, Hirokawa K (2000) XPS study of oxides formed on the surface of high-purity iron exposed to air. Surf Interface Anal 30(1):372–376

    Article  CAS  Google Scholar 

  64. Allen GC, Curtis MT, Hooper AJ, Tucker PM (1974) X-ray photoelectron spectroscopy of iron–oxygen systems. J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9740001525

    Article  Google Scholar 

  65. Wang GY, Lian HL, Zhang WX, Jiang DZ, Wu TH (2002) Stability and deactivation of Au/Fe2O3 catalysts for CO oxidation at ambient temperature and moisture. Kinet Catal 43(3):433–442

    Article  CAS  Google Scholar 

  66. Kurtz RL, Henrich VE (1983) Geometric structure of the α-Fe2O3 (001) surface: a LEED and XPS study. Surf Sci 129(2–3):345–354

    Article  CAS  Google Scholar 

  67. Grosvenor A, Kobe B, Biesinger M, McIntyre N (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36(12):1564–1574

    Article  CAS  Google Scholar 

  68. McIntyre N, Zetaruk D (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49(11):1521–1529

    Article  CAS  Google Scholar 

  69. Wu Z, Jiang D-e, Mann AK, Mullins DR, Qiao Z-A, Allard LF et al (2014) Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J Am Chem Soc 136(16):6111–6122

    Article  CAS  PubMed  Google Scholar 

  70. Wu Z, Zhou S, Zhu H, Dai S, Overbury SH (2009) DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst: nature and role of different Au species. J Phys Chem C 113(9):3726–3734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences and Biosciences Division. Synthetic procedures were conducted at the Joint Institute of Advanced Materials at the University of Tennessee. XPS and FTIR data were acquired by Harry M. Meyer III and Guo Shiou Foo, respectively, at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Dai.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukosi, M., Tian, C., Li, X. et al. Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation. Catal Lett 148, 2315–2324 (2018). https://doi.org/10.1007/s10562-018-2437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2437-x

Keywords

Navigation