Skip to main content

Advertisement

Log in

Fischer–Tropsch Synthesis: Impact of H2 or CO Activation on Methane Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of CO conversion on methane selectivity of a 10 % Co/TiO2 catalyst was investigated using a 1L continuously stirred tank reactor at 493–503 K, 2.4 MPa, H2/CO = 2 and GHSV = 0.4–6 Nl g −1cat  h−1. The cobalt catalysts were activated by H2 and CO, respectively, in two separate runs. For the H2 activated catalyst, the methane selectivity decreased (15–6 %) and C5+ selectivity increased (80–91 %) linearly with increasing CO conversion from 10 to 60 %. The C2–C4 hydrocarbon selectivity decreased slightly with CO conversion. The enhancement in C5+ selectivity was mainly due to the decrease in methane selectivity. The CO activated cobalt catalyst was initially in a carburized form after activation, and then converted to a form with greater metallic character when exposed to syngas at Fischer–Tropsch conditions. The CO activated catalyst at pseudo steady-state had higher methane selectivity in general as compared to the H2 activated one, possibly due to the presence of the cobalt carbide phase. Two kinetic regions appear to exist for the CO activated catalyst. When CO conversion is lower than 20 %, the methane selectivity increased exponentially with CO conversion, which is attributed to enhanced hydrogenation. When CO conversion is higher than 20 %, the CO activated catalyst behaves more like a H2 activated catalyst, with a decrease in methane and an increase in C5+ selectivity with CO conversion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dry ME (2002) High quality diesel via the Fischer–Tropsch process—a review. J Chem Technol Biotechnol 77:43–50

    Article  CAS  Google Scholar 

  2. Vannice MA (1975) The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: I. The specific activities and product distributions of supported metals. J Catal 37:449–461

    Article  CAS  Google Scholar 

  3. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  4. Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  5. Iglesia E, Soled SL, Fiato RA, Via GH (1994) Dispersion, support, and bimetallic effects in Fischer–Tropsch synthesis on cobalt catalysts. Stud Surf Sci Catal 81:433–442

    Article  CAS  Google Scholar 

  6. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer–Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal 206:230–241

    Article  CAS  Google Scholar 

  7. Borg O, Eri S, Blekkan EA, Storsaeter S, Wigum H, Rytter E, Holmen A (2007) Fischer–Tropsch synthesis over gamma-calumina-supported cobalt catalysts: effect of support variables. J Catal 248:89–100

    Article  CAS  Google Scholar 

  8. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Van Diilen AJ, De Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  9. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, Jong KPD (2009) On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 131:7197–7203

    Article  Google Scholar 

  10. Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J Catal 266:129–144

    Article  CAS  Google Scholar 

  11. Yang J, Tveten EZ, Chen D, Holmen A (2010) Understanding the effect of cobalt particle size on Fischer–Tropsch Synthesis: surface species and mechanistic studies by SSITKA and kinetic isotope effect. Langmuir 26:16558–16567

    Article  CAS  Google Scholar 

  12. Rane S, Borg Ø, Rytter E, Holmen A (2012) Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A 437–438:10–17

    Article  Google Scholar 

  13. O’Brien RJ, Xu L, Spicer RL, Bao S, Milburn DR, Davis BH (1997) Activity and selectivity of precipitated iron Fischer–Tropsch catalysts. Catal Today 36:325–334

    Article  Google Scholar 

  14. Ma W, Jacobs G, Ji Y, Bhatelia T, Bukur DB, Khalid S, Davis BH (2011) Fischer–Tropsch synthesis: influence of CO conversion on selectivities, H2/CO usage ratios, and catalyst stability for a Ru promoted Co/Al2O3 catalyst using a slurry phase reactor. Top Catal 54:757–767

    Article  CAS  Google Scholar 

  15. Bukur DB, Pan Z, Ma W, Jacobs G, Davis BH (2012) Effect of CO conversion on the product distribution of a Co/Al2O3 Fischer–Tropsch synthesis catalyst using a fixed bed reactor. Catal Lett 142:1382–1387

    Article  CAS  Google Scholar 

  16. Weller S, Hofer LJE, Anderson RB (1948) The role of bulk cobalt carbide in the Fischer–Tropsch synthesis1. J Am Chem Soc 70:799–801

    Article  CAS  Google Scholar 

  17. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2009) Density functional theory study of iron and cobalt carbides for Fischer–Tropsch synthesis. J Phys Chem C 114:1085–1093

    Article  Google Scholar 

  18. Mohandas JC, Gnanamani MK, Jacobs G, Ma W-P, Ji Y–Y, Khalid S, Davis BH (2011) Fischer–Tropsch synthesis: characterization and reaction testing of cobalt carbide. ACS Catal. 1:1581–1588

    Article  CAS  Google Scholar 

  19. Li J, Jacobs G, Das T, Davis BH (2002) Fischer–Tropsch synthesis: effect of water on the catalytic properties of a ruthenium promoted Co/TiO2 catalyst. Appl Catal A 233:255–262

    Article  CAS  Google Scholar 

  20. Jacobs G, Ma W, Gao P, Todic B, Bhatelia T, Bukur DB, Khalid S, Davis BH (2012) Fischer–Tropsch synthesis: differences observed in local atomic structure and selectivity with Pd compared to typical promoters (Pt, Re, Ru) of Co/Al2O3 catalysts. Top Catal 55:811–817

    Article  CAS  Google Scholar 

  21. Ressler T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 5:118–122

    Article  CAS  Google Scholar 

  22. Shein IR, Medvedeva NI, Ivanovskii AL (2006) Electronic and structural properties of cementite-type M3X (M = Fe, Co., Ni; X = C or B) by first principles calculations. Phys B 371:126–132

    Article  CAS  Google Scholar 

  23. Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72:621–654

    Article  CAS  Google Scholar 

  24. Ravel B (2001) ATOMS: crystallography for the X-ray absorption spectroscopist. J Synchrotron Radiat 8:314–316

    Article  CAS  Google Scholar 

  25. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–324

    Article  CAS  Google Scholar 

  26. Storsæter S, Borg Ø, Blekkan EA, Holmen A (2005) Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts. J Catal 231:405–419

    Article  Google Scholar 

  27. Iglesia E, Reyes SC, Madon RJ (1991) Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. J Catal 129:238–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for financial support from the Research Council of Norway. CAER researchers would like to thank the Commonwealth of Kentucky.We would also like to thank Dr. Syed Khalid and Dr. Nebojsa Marinkovic for assistance at Beamline X-18b. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Jacobs, G., Jermwongratanachai, T. et al. Fischer–Tropsch Synthesis: Impact of H2 or CO Activation on Methane Selectivity. Catal Lett 144, 123–132 (2014). https://doi.org/10.1007/s10562-013-1099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1099-y

Keywords

Navigation