Skip to main content
Log in

Synthesis of 2-Methylpyrazine Over Highly Dispersed Copper Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of CuCoAl catalysts were synthesized by co-precipitation and impregnation methods, tested in synthesis of 2-methylpyrazine (2-MP) and characterized by X-ray diffraction, N2 adsorption, thermo-gravimetry analysis, H2-temperature-programmed reduction, dissociative N2O adsorption and temperature-programmed oxidation. The precursors prepared by co-precipitation method shows a well-crystallized hydrotalcite. The study proves that the calcination temperature of hydrotalcite has a significant effect on the catalyst surface area, crystallite size and copper dispersion. In comparison with catalyst prepared by impregnation, the catalyst prepared by co-precipitation method calcined at 500 °C exhibits higher specific surface area, higher copper dispersion and the better reducibility. Consequently, CuCoAl catalyst derived from hydrotalcite is more active and selective for synthesis of 2-MP. Moreover, it shows the better stability due to the good resistance to coke formation.

Graphical Abstract

A novel solid base catalyst containing copper and spinel was prepared by the thermal decomposition of Cu–Co–Al hydrotalcite-like compounds for synthesis of 2-methylpyrazine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrell J, Birgersson H, Boutonnet M, Melián-Cabrera I, Navarro RM, Fierro JLG (2003) J Catal 219:389

    Article  CAS  Google Scholar 

  2. Matter PH, Braden DJ, Ozkan US (2004) J Catal 223:340

    Article  CAS  Google Scholar 

  3. Kniep BL, Girgsdies F, Ressler T (2005) J Catal 236:34

    Article  CAS  Google Scholar 

  4. Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) J Catal 194:373

    Article  CAS  Google Scholar 

  5. Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:56

    CAS  Google Scholar 

  6. Natal-Santiago MA, Sánchez-Castillo MA, Cortright RD, Dumesic JA (2000) J Catal 193:16

    Article  Google Scholar 

  7. Scheur FT, Linden B, Mittelmeijer-Hazeleger MC, Nazloomian JG, Staat LH (1994) Appl Catal A Gen 111:63

    Article  Google Scholar 

  8. Zawadzki M, Staszak W, López-Suárez FE, Illán-Gómez MJ, Bueno-López A (2009) Appl Catal A Gen 371:92

    Article  CAS  Google Scholar 

  9. Obalová L, Karásková K, Jirátová K, Kovanda F (2009) Appl Catal B Environ 90:132

    Article  Google Scholar 

  10. Takahashi R, Sato S, Sodesawa T, Kato M (2000) J Sol–Gel Sci Technol 19:715

    Article  CAS  Google Scholar 

  11. Carvalho MCN, Passos FB, Schmal M (2002) Catal Commun 3:503

    Article  Google Scholar 

  12. Wang ZL, Liu QS, Yu JF, Wu TH, Wang G (2003) Appl Catal A Gen 239:87

    Article  CAS  Google Scholar 

  13. Choudary BM, Kantam ML, Rahman A, Reddy CV, Rao KK (2001) Angew Chem Int Ed 40:763

    Article  CAS  Google Scholar 

  14. Gao LD, Tang Y, Xue QS, Liu Y, Lu Y (2009) Energ Fuels 23:624

    Article  CAS  Google Scholar 

  15. Zhou CH, Beltramini JN, Lin CX, Xu ZP, Lu GQM, Tanksale A (2011) Catal Sci Technol 1:111

    Article  CAS  Google Scholar 

  16. Yuan ZL, Wang L, Wang JH, Xia SX, Chen P, Hou ZY, Zheng X (2011) Appl Catal B Environ 101:431

    Article  CAS  Google Scholar 

  17. Yu XP, Chu W, Wang N, Ma F (2011) Catal Lett 141:1228

    Article  CAS  Google Scholar 

  18. Yu JJ, Wang XP, Li LD, Hao ZP, Xu ZP, Lu GQM (2007) Adv Funct Mat 17:3598

    Article  CAS  Google Scholar 

  19. Xu WJ, Liu XH, Ren JW, Liu HH, Ma YC, Wang YQ, Lu G (2011) Microporous Mesoporous Mater 142:251

    Article  CAS  Google Scholar 

  20. Yu JJ, Tao YX, Liu CC, Hao ZP, Xu Z (2007) Environ Sci Technol 41:1399

    Article  CAS  Google Scholar 

  21. Rives V, Dubey A, Kannan S (2001) Phys Chem Chem Phys 3:4826

    Article  CAS  Google Scholar 

  22. Gabrovska M, Edreva-Kardjieva R, Tenchev K, Tzvetkov P, Spojakina A, Petrov L (2011) Appl Catal A Gen 399:242

    Article  CAS  Google Scholar 

  23. Velu S, Suzuki K, Hashimoto S, Satoh N, Ohashi F, Tomura S (2001) J Mater Chem 11:2049

    Article  CAS  Google Scholar 

  24. Forni L, Pollesel P (1991) J Catal 130:403

    Article  CAS  Google Scholar 

  25. Forni L, Stern G, Gatti M (1987) Appl Catal 29:161

    Article  CAS  Google Scholar 

  26. Gervasini A, Bennici S (2005) Appl Catal A Gen 281:199

    Article  CAS  Google Scholar 

  27. Holgado MJ, Rivers V, Román MSS (2001) Appl Catal A Gen 214:219

    Article  CAS  Google Scholar 

  28. Pérez-Bernal ME, Ruano-Casero RJ, Rives V (2009) J Solid State Chem 182:2566

    Article  Google Scholar 

  29. Jing FL, Zhang YY, Luo SZ, Chu W, Qian W (2010) Appl Clay Sci 48:203

    Article  CAS  Google Scholar 

  30. Rives V, Kannan S (2000) J Mater Chem 10:489

    Article  CAS  Google Scholar 

  31. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  32. Mokhtar M, Basahel SN, Al-Angary YO (2010) J Alloy Compd 493:376

    Article  CAS  Google Scholar 

  33. Shimoda N, Faungnawakij K, Kikuchi R, Fukunag T, Eguchi K (2009) Appl Catal A Gen 365:71

    Article  CAS  Google Scholar 

  34. Faungnawakij K, Shimoda N, Tetsuya F, Ryuji K, Eguchi K (2009) Appl Catal B Environ 92:341

    Article  CAS  Google Scholar 

  35. Lamonier JF, Boutoundou AB, Gennequin C, Pérez-Zurita MJ, Siffert S, Aboukais A (2007) Catal Lett 118:165

    Article  CAS  Google Scholar 

  36. Wang N, Chu W, Zhang T, Zhao XS (2011) Chem Eng J 170:457

    Article  CAS  Google Scholar 

  37. Wang N, Chu W, Huang LQ, Zhang T (2010) J Nat Gas Chem 19:117

    Article  CAS  Google Scholar 

  38. Agrell J, Hasselbo K, Jansson K, Järås SG, Boutonnet M (2001) Appl Catal A Gen 211:239

    Google Scholar 

  39. Liu YY, Hayakawa T, Suzuki K, Hamakawa S, Tsunoda T, Ishii T, Kumagai M (2002) Appl Catal A Gen 223:137

    Article  CAS  Google Scholar 

  40. Esposito S, Turco M, Bagnasco G, Cammarano C, Pernice P, Aronne A (2010) Appl Catal A Gen 372:48

    Article  CAS  Google Scholar 

  41. Park I, Lee J, Rhee Y, Han Y, Kim H (2003) Appl Catal A Gen 253:249

    Article  CAS  Google Scholar 

  42. Park I, Rhee Y, Lee J, Han Y, Jeon J, Kim H (2003) Res Chem Intermed 29:575

    Article  CAS  Google Scholar 

  43. Christensen KO, Chen D, Lødeng R, Holmen A (2006) Appl Catal A Gen 314:9

    Article  CAS  Google Scholar 

  44. Ereña J, Sierra I, Olazar M, Gayubo AG, Aguayo AT (2008) Ind Eng Chem Res 47:2238

    Article  Google Scholar 

  45. Martín N, Viniegra M, Lima E, Espinosa G (2004) Ind Eng Chem Res 43:1206

    Article  Google Scholar 

  46. Sierra I, Ereña J, Aguayo AT, Arandes JM, Bilbao J (2010) Appl Catal B Environ 94:108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program (863 Program, NO.2008AA062402-1), the National Basic Research Program of China Program (973 Program, NO.2011CB201202), and Chinese Chengda Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Zhong Luo or Wei Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Jing, FL., Yu, XP. et al. Synthesis of 2-Methylpyrazine Over Highly Dispersed Copper Catalysts. Catal Lett 142, 492–500 (2012). https://doi.org/10.1007/s10562-012-0782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0782-8

Keywords

Navigation