Skip to main content
Log in

Effect of Atomic Layer Deposition Support Thickness on Structural Properties and Oxidative Dehydrogenation of Propane on Alumina- and Titania-Supported Vanadia

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Engineered solid supports for vanadium catalysts were prepared by atomic layer deposition (ALD) of alumina and titania layers on silica. The thickness of these layers was found to have a significant effect on the structure of the solid supports, their interaction with vanadia, and their catalytic performance with regard to oxidative dehydrogenation of propane. The catalytic performance of supported vanadia catalysts is reported for both ALD-engineered and conventional solid supports (γ-Al2O3 and TiO2). The analysis results indicated that the engineered supports behave as a separate phase rather than a cross between the base silica and the deposited alumina or titania.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cavani F, Vallarini N, Cericola A (2007) Catal Today 127:113

    Article  CAS  Google Scholar 

  2. Lemonidou AA, Nalbandian L, Vasalos IA (2000) Catal Today 61:333

    Article  CAS  Google Scholar 

  3. Ertl G, Knözinger H, Weitkamp J (eds) (1999) Preparation of solid catalysts. Wiley VCH, Weinheim

    Google Scholar 

  4. Arena F, Giordano N, Parmaliana A (1997) J Catal 166:66

    Article  Google Scholar 

  5. Lewandowska AE, Banares MA, Khabibulin DF, Lapina OB (2009) J Phys Chem C 113:20648

    Article  CAS  Google Scholar 

  6. Gao X, Wachs IE (2000) J Phys Chem B 104:1261

    Article  CAS  Google Scholar 

  7. Arena F, Fusteri F, Parmaliana A (1999) Appl Catal 176:177

    Article  Google Scholar 

  8. Conforth JW, Morgan ED, Potts KT, Rees RJW (1973) Tetrahedron 29:1659

    Article  Google Scholar 

  9. Baltes M, Cassiers K, Van Der Voort P, Weckhuysen BM, Schoonheydt RA, Vansant EF (2001) J Catal 197:160

    Article  CAS  Google Scholar 

  10. Capek L, Adam J, Grygar T, Bulanek R, Vradman L, Kosova-Kucerova G, Cicmanec P, Knotek P (2008) Appl Catal A 342:99

    Article  CAS  Google Scholar 

  11. Roozeboom F, Miltlermeljer-Hazeleger MC, Moulljn JA, Medema J, de Beer VHJ, Gellings PJ (1980) J Phys Chem 84:2783

    Article  CAS  Google Scholar 

  12. Sereda G, Kim T, Jones A, Khatri H, Marshall C, Subramanian H, Koodali R (2011) Catal Lett 141:1086

    Article  CAS  Google Scholar 

  13. George SM, Ott AW, Klaus JW (1996) J Phys Chem 100:13121

    Article  CAS  Google Scholar 

  14. Reddy EP, Varma RS (2004) J Catal 221:93

    Article  CAS  Google Scholar 

  15. Argyle MD, Chen K, Bell AT, Iglesia E (2002) J Catal 208:139

    Article  CAS  Google Scholar 

  16. Concepcion P, Reddy BM, Knözinger H (1999) Phys Chem Phys 1:3031

    Article  CAS  Google Scholar 

  17. Magg N, Immaraporn B, Giorgi JB, Thomas S, Baumer M, Dobler J, Wu Z, Kondratenko E, Cherian M, Baerns M, Stair PC, Sauer J, Freund H (2000) J Catal 226:88

    Article  CAS  Google Scholar 

  18. Tian H, Ross EI, Wachs IE (2006) J Phys Chem 110:9593

    Article  CAS  Google Scholar 

  19. Park S-J, Kang YC, Park JY, Evans EA, Ramsier RD, Chase GGJ (2010) Eng Fibers Fabr 5:50

    CAS  Google Scholar 

  20. Kim HS, Zygmunt SA, Stair PC, Zapol P, Curtiss LA (2009) J Phys Chem C 113:8836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the US Department of Energy under Contract No. DE-FG02-08ER64624; by the National Science Foundation (NSF-CHE-0722632, EPSCoR Grants No. 0554609 and 0903804), and by the State of South Dakota (NSF NPURC Grant 0532242). Christopher L. Marshall and Joe Libera acknowledge the support of the US Department of Energy, Office of Basic Energy Science under Contract DE-FG02-03-ER15457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigoriy Sereda.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 978 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sereda, G., Marshall, C., Libera, J.A. et al. Effect of Atomic Layer Deposition Support Thickness on Structural Properties and Oxidative Dehydrogenation of Propane on Alumina- and Titania-Supported Vanadia. Catal Lett 142, 399–407 (2012). https://doi.org/10.1007/s10562-012-0780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0780-x

Keywords

Navigation