Skip to main content
Log in

Aerobic Oxidation of Benzyl Alcohol over Activated Carbon Supported Manganese and Vanadium Catalysts: Effect of Surface Oxygen-Containing Groups

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this contribution, the selective oxidation of benzyl alcohol using molecular oxygen over supported manganese and vanadium catalysts was investigated. The catalytic activities were significantly improved after pre-oxidizing the activated carbon support materials. Characterizations of nitrogen physisorption, X-ray diffraction, transmission electron microscopy, and X-ray absorption were involved to examine the physicochemical properties of as-prepared catalysts. By ruling out the effects of specific surface area, active site dispersion, valence and local coordination of Mn and V active species, the improved catalytic activity was attributed to the specific variety and increased density of oxygen-containing groups on activated carbon support surfaces, which was further confirmed by cyclic voltammetry measurements and Fourier transform infrared spectroscopy.

Graphical Abstract

Surface oxidation pretreatment significantly enhances the catalytic activity of benzyl alcohol oxidation. Ruling out the variation of specific surface area and catalytic site characteristics, the improvement is attributed to the elevated surface oxygen density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheldon RA, Arends IWCE, Dijksman A (2000) Catal Today 57:157

    Article  CAS  Google Scholar 

  2. Sheldon RA, Arends IWCE, ten Brink GJ, Dijksman A (2002) Acc Chem Res 35:774

    Article  CAS  Google Scholar 

  3. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidation of organic compounds. Academic Press, New York

    Google Scholar 

  4. Abad A, Almela C, Corma A, Garcia H (2006) Chem Commun 3178

  5. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:10657

    Article  CAS  Google Scholar 

  6. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362

    Article  CAS  Google Scholar 

  7. Tang QH, Chen YT, Yang YH (2010) J Mol Catal A Chem 315:43

    Article  CAS  Google Scholar 

  8. Tang QH, Gong XN, Wu CM, Chen YT, Borgna A, Yang YH (2009) Catal Commun 10:1122

    Article  CAS  Google Scholar 

  9. Tang QH, Huang XN, Chen YT, Liu T, Yang YH (2009) J Mol Catal A Chem 301:24

    Article  CAS  Google Scholar 

  10. Tang QH, Huang XN, Wu CM, Zhao PZ, Chen YT, Yang YH (2009) J Mol Catal A Chem 306:48

    Article  CAS  Google Scholar 

  11. Tang QH, Liu T, Yang YH (2008) Catal Commun 9:2570

    Article  CAS  Google Scholar 

  12. Tang QH, Wu CM, Huang XO, Yang YH (2009) Chin J Catal 30:207

    Google Scholar 

  13. Bond GC, Tahir SF (1991) Appl Catal 71:1

    Article  CAS  Google Scholar 

  14. Reddy BM, Sreekanth PM, Reddy EP, Yamada Y, Xu QA, Sakurai H, Kobayashi T (2002) J Phys Chem B 106:5695

    Article  CAS  Google Scholar 

  15. Nag NK, Chary KVR, Reddy BM, Rao BR, Subrahmanyam VS (1984) Appl Catal 9:225

    Article  CAS  Google Scholar 

  16. Kono Y, Fridovich I (1983) J Biol Chem 258:3646

    Google Scholar 

  17. Whittaker JW, Whittaker MM (1991) J Am Chem Soc 113:5528

    Article  CAS  Google Scholar 

  18. Radovic LR, Rodriguez-Reinoso F, Thrower IPA (eds) (1997) Chemistry and physics of carbon. Dekker, New York, p 243

    Google Scholar 

  19. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379

    Article  CAS  Google Scholar 

  20. Rodriguez-Reinoso F (1998) Carbon 36:159

    Article  CAS  Google Scholar 

  21. Donnet JB (1968) Carbon 6:161

    Article  CAS  Google Scholar 

  22. Toebes ML, van der Lee MK, Tang LM, in ‘t Veld MHH, Bitter JH, van Dillen AJ, de Jong KP (2004) J Phys Chem B 108:11611

    Google Scholar 

  23. Plomp AJ, Vuori H, Krause AOI, de Jong KP, Bitter JH (2008) Appl Catal A Gen 351:9

    Article  CAS  Google Scholar 

  24. Plomp AJ, van Asten DMP, van der Eerden AMJ, Maki-Arvela P, Murzin DY, de Jong KP, Bitter JH (2009) J Catal 263:146

    Article  CAS  Google Scholar 

  25. Toebes ML, Zhang YH, Hajek J, Nijhuis TA, Bitter JH, van Dillen AJ, Murzin DY, Koningsberger DC, de Jong KP (2004) J Catal 226:215

    Article  CAS  Google Scholar 

  26. Ramaker DE, de Graaf J, van Veen JAR, Koningsberger DC (2001) J Catal 203:7

    Article  CAS  Google Scholar 

  27. Koningsberger DC, Oudenhuijzen MK, de Graaf J, van Bokhoven JA, Ramaker DE (2003) J Catal 216:178

    Article  CAS  Google Scholar 

  28. Mojet BL, Miller JT, Ramaker DE, Koningsberger DC (1999) J Catal 186:373

    Article  CAS  Google Scholar 

  29. Jarrais B, Silva AR, Freire C (2005) Eur J Inorg Chem 4582

  30. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  31. Moser HO, Casse BDF, Chew EP, Cholewa M, Diao CZ, Ding SXD, Kong JR, Li ZW, Hua M, Ng ML, Saw BT, bin Mahmood S, Vidyaraj SV, Wilhelmi O, Wong J, Yang P, Yu XJ, Gao XY, Wee ATS, Sim WS, Lu D, Faltermeier RB (2005) Nucl Instrum Methods B 238:83

    Article  CAS  Google Scholar 

  32. Donze C, Korovchenko P, Gallezot P, Besson M (2007) Appl Catal B Environ 70:621

    Article  CAS  Google Scholar 

  33. Noh JS, Schwarz JA (1990) Carbon 28:675

    Article  CAS  Google Scholar 

  34. Moreno-Castilla C, Carrasco-Marin F, Maldonado-Hodar FJ, Rivera-Utrilla J (1998) Carbon 36:145

    Article  CAS  Google Scholar 

  35. Vonbordwehr RS (1989) Ann Phys 14:377

    Article  Google Scholar 

  36. Lytle FW (1999) J Synchrotron Radiat 6:123

    Article  CAS  Google Scholar 

  37. Brown NMD, McMonagle JB, Greaves GN (1984) J Chem Soc Faraday Trans 80:589

    CAS  Google Scholar 

  38. Zhang QH, Wang Y, Itsuki S, Shishido T, Takehira K (2002) J Mol Catal A Chem 188:189

    Article  CAS  Google Scholar 

  39. Wong J, Lytle FW, Messmer RP, Maylotte DH (1984) Phys Rev B 30:5596

    Article  CAS  Google Scholar 

  40. Du G, Lim S, Pinault M, Wang C, Fang F, Pfefferle L, Haller GL (2008) J Catal 253:74

    Article  CAS  Google Scholar 

  41. Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042

    Article  CAS  Google Scholar 

  42. Swiatkowski A, Pakula M, Biniak S, Walczyk M (2004) Carbon 42:3057

    Article  CAS  Google Scholar 

  43. Lawrence NS, Deo RP, Wang J (2005) Electroanalysis 17:65

    Article  CAS  Google Scholar 

  44. Fanning PE, Vannice MA (1993) Carbon 31:721

    Article  CAS  Google Scholar 

  45. Romanmartinez MC, Cazorlaamoros D, Linaressolano A, Delecea CSM, Yamashita H, Anpo M (1995) Carbon 33:3

    Article  CAS  Google Scholar 

  46. Solar JM, Leon CAL, Osseoasare K, Radovic LR (1990) Carbon 28:369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Singapore Agency for Science, Technology and Research (A*STAR), SERC Grant No: 102 101 0020 in support of this project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Chen, W., Tang, Q. et al. Aerobic Oxidation of Benzyl Alcohol over Activated Carbon Supported Manganese and Vanadium Catalysts: Effect of Surface Oxygen-Containing Groups. Catal Lett 141, 149–157 (2011). https://doi.org/10.1007/s10562-010-0447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0447-4

Keywords

Navigation