Skip to main content
Log in

Phase-Boundary Photocatalytic Oxidation of Dibenzothiophene Over Amphiphilic Ti-MCM-41 Molecular Sieve

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrophilic Ti-MCM-41 was modified by alkylsilyl groups using n-octadecyltrichlorosilane as the precursor, yielding an amphiphilic molecular sieve denoted as OTS-Ti-MCM-41. The sample retained mesoporous structure and morphology, as confirmed by XRD, N2 adsorption–desorption, and SEM. The presence of surface alkylsilyl groups was confirmed by infrared spectroscopy. The amphiphilic OTS-Ti-MCM-41 located at the boundary between aqueous and organic phases acted as a phase-boundary catalyst for the photooxidation of dibenzothiophene (DBT) without the need of adding a co-solvent to drive liquid–liquid phase transfer. With H2O2 as the oxidant, the conversion of DBT on OTS-Ti-MCM-41 was up to 98% at 2 h, much higher than that on Ti-MCM-41. When air was used instead of H2O2 as the oxidant, the conversion of DBT on OTS-Ti-MCM-41 was up to 85% at 2 h.

Graphical abstracts

Hydrophilic Ti-MCM-41 was modified by alkylsil groups using n-octadecyltrichlorosilane as the precursor. The resulting OTS-Ti-MCM-41 sample located at the boundary between aqueous and organic phases acted as a phase-boundary catalyst for the photooxidation of dibenzothiophene (DBT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dumont V, Oliviero L, Maugé F, Houalla M (2008) Catal Today 130:195

    Article  CAS  Google Scholar 

  2. Tam PS, Kittrell JR, Eldridge JW (1990) Ind Eng Chem Res 29:324

    Article  CAS  Google Scholar 

  3. Otsuki S, Nonaka T, Takashima N, Qian WH, Ishihara A, Imai T, Kabe T (2000) Energy Fuels 14:1232

    Article  CAS  Google Scholar 

  4. Yazu K, Yamamoto Y, Furuya T, Miki K, Ukegawa K (2001) Energy Fuels 15:1535

    Article  CAS  Google Scholar 

  5. Yazu K, Makino M, Ukegawa K (2004) Chem Lett 33:1306

    Article  CAS  Google Scholar 

  6. Li C, Jiang ZX, Gao JB, Yang YX, Wang SJ, Tian FP, Sun FX, Sun XP, Ying PL, Han CR (2004) Chem Eur J 10:2277

    Article  CAS  Google Scholar 

  7. Torres-García E, Canizal G, Velumani S, Ramírez-Verduzco LF, Murrieta-Guevara F, Ascencio JA (2004) Appl Phys A 79:2037

    Google Scholar 

  8. Zapata B, Pedraza F, Valenzuela MA (2005) Catal Today 106:219

    Article  CAS  Google Scholar 

  9. Viveros-García T, Ochoa-Tapia JA, Lobo-Oehmichen R, de los Reyes-Heredia JA, Pérez-Cisneros ES (2005) Chem Eng J 106:119

    Article  Google Scholar 

  10. Hirai T, Ogawa K, Komasawa I (1996) Ind Eng Chem Res 35:586

    Article  CAS  Google Scholar 

  11. Matsuzawa S, Tanaka J, Sato S, Ibusuki T (2002) J Photochem Photobiol A 149:183

    Article  CAS  Google Scholar 

  12. Notari B (1996) Adv Catal 41:253

    Article  CAS  Google Scholar 

  13. Arends IWCE, Sheldon RA (2001) Appl Catal A 212:175

    Article  CAS  Google Scholar 

  14. Wróblewska A, Wajzberg J, Fajdek A, Milchert E (2009) J Hazard Mater 163:1303

    Article  Google Scholar 

  15. Reddy RS, Reddy JS, Kumar R, Kumar P (1992) J Chem Soc Chem Commun 84

  16. Hulea V, Moreau P, Renzo FD (1996) J Mol Catal A 111:325

    Article  CAS  Google Scholar 

  17. Corma A, Iglesias M, Sánchez F (1996) Catal Lett 39:153

    Article  CAS  Google Scholar 

  18. Moreau P, Hulea V, Gomez S, Brunel D, Renzo FD (1997) Appl Catal A 155:253

    Article  CAS  Google Scholar 

  19. Shiraishi Y, Hirai T, Komasawa I (2002) J Chem Eng Jpn 35:1305

    Article  CAS  Google Scholar 

  20. Kong LY, Li G, Wang XS (2004) Catal Lett 92:163

    Article  CAS  Google Scholar 

  21. Kong LY, Li G, Wang XS (2004) Catal Today 93–95:341

    Article  Google Scholar 

  22. Zhang J, Zhao DS, Yang LY, Li YB (2010) Chem Eng J 156:528

    Article  CAS  Google Scholar 

  23. Nur H, Ikeda S, Ohtani B, Chem Commun (2000) 2235

  24. Nur H, Ikeda S, Ohtani B (2001) J Catal 204:402

    Article  CAS  Google Scholar 

  25. Gou XW, Li YW, Wang XS (2005) J Dalian Univ Technol 45:326

    Google Scholar 

  26. Fuji M, Machida K, Takei T, Watanabe T, Chikazawa M (1998) J Phys Chem B 102:8782

    Article  CAS  Google Scholar 

  27. Koyano KA, Tatsumi T (1997) Micropor Mater 10:259

    Article  Google Scholar 

  28. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  29. Zhou W, Meng FL, Xu QH, Dong JL, Chun Y (2004) Acta Chimi Sin 62:1425

    CAS  Google Scholar 

  30. Singh R, Dutta PK (1999) Micropor Mesopor Mater 32:29

    Article  CAS  Google Scholar 

  31. D’Amore MB, Schwarz S (1999) Chem Commun 121

  32. Bhaumik A, Tatsumi T (2000) J Catal 189:31

    Article  CAS  Google Scholar 

  33. Igarashi N, Hashimoto K, Tatsumi T (2007) Micropor Mesopor Mater 104:269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant 20276015 from National Natural Science Foundation of China and Grant 203364 from National Natural Science Foundation of HeBei province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dishun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhao, D., Ma, Z. et al. Phase-Boundary Photocatalytic Oxidation of Dibenzothiophene Over Amphiphilic Ti-MCM-41 Molecular Sieve. Catal Lett 138, 111–115 (2010). https://doi.org/10.1007/s10562-010-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0377-1

Keywords

Navigation