Skip to main content
Log in

The Water–Gas-Shift Reaction on Pd/Ceria–Praseodymia: The Effect of Redox Thermodynamics

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Reaction rates for the water–gas-shift (WGS) reaction were measured on catalysts with 1-wt% Pd supported on CeO2, Ce0.5Pr0.5O2−x and PrO x in order to determine whether the weakly bound oxygen associated with Pr could enhance reaction rates. However, differential rates in 25 Torr of both CO and H2O showed that the activity of Pr-containing catalysts were much lower. Measurements of the oxygen content of these samples after reduction in dry H2 at 873 K, after reoxidation in steam at 873 K, and following exposure of the catalysts to WGS conditions at 873 K demonstrate that ceria is easily reoxidized by steam and remains oxidized under WGS conditions, while the loosely bound oxygen associated with praseodymia or ceria–praseodymia is lost under WGS conditions and cannot be restored by oxidation in steam. These results can be understood by comparing the equilibrium redox properties of the support materials to the typical P(O2) experienced under WGS conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghenciu AF (2002) Curr Opin Solid St Mater Sci 6:389

    Article  Google Scholar 

  2. Liu X, Ruettinger W, Xu X, Farrauto R (2005) Appl Catal B 56:69

    Article  CAS  Google Scholar 

  3. Swartz SL, Seabaugh MM, Holt CT, Dawson WJ (2001) Fuel Cell Bull 4:7

    Article  Google Scholar 

  4. Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J (2001) Appl Catal A 215:271

    Article  CAS  Google Scholar 

  5. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107

    Article  CAS  Google Scholar 

  6. Radhakrishnan R, Willigan RR, Dardas Z, Vanderspurt TH (2006) Appl Catal B 66:23

    Article  CAS  Google Scholar 

  7. Phatak AA, Koryabkina N, Rai S, Ratts JL, Ruettinger W, Farrauto RJ, Blau GE, Delgass WN, Ribeiro FH (2007) Catal Today 123:224

    Article  CAS  Google Scholar 

  8. Craciun R, Shereck B, Gorte RJ (1998) Catal Lett 51:149

    Article  CAS  Google Scholar 

  9. Wang X, Gorte RJ (2002) Appl Catal A 224:209

    Article  CAS  Google Scholar 

  10. Wang X, Gorte RJ (2001) Catal Lett 73:15

    Article  CAS  Google Scholar 

  11. Noronha FB, Shamsi A, Taylor C, Fendley EC, Stagg-Williams S, Resasco DE (2003) Catal Lett 90:13

    Article  CAS  Google Scholar 

  12. Gorte RJ, Zhao S (2005) Catal Today 104:18

    Article  CAS  Google Scholar 

  13. Jacobs G, Patterson PM, Graham UM, Sparks DE, Davis BH (2004) Appl Catal A 269:63

    Article  CAS  Google Scholar 

  14. Bunluesin T, Cordatos H, Gorte RJ (1995) J Catal 157:222

    Article  CAS  Google Scholar 

  15. Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) J Phys Chem C 112:4608

    Article  CAS  Google Scholar 

  16. Mhadeshwar AB, Vlachos DG (2005) J Catal 234:48

    Article  CAS  Google Scholar 

  17. Kim S, Merkle R, Maier J (2004) Surf Sci 549:196

    Article  CAS  Google Scholar 

  18. Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) J Phys Chem B 104:11110

    Article  CAS  Google Scholar 

  19. O’Connell M, Morris MA (2000) Catal Today 59:387

    Article  CAS  Google Scholar 

  20. Radhakrishnan R, Willigan RR, Dardas Z, Vanderspurt TH (2006) AIChE J 52:1888

    Article  CAS  Google Scholar 

  21. Zhao M, Shen M, Wang J, Wang W (2007) Ind Eng Chem Res 46:7883

    Article  CAS  Google Scholar 

  22. Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18:3249

    Article  CAS  Google Scholar 

  23. Zhou G, Hanson J, Gorte RJ (2008) Appl Catal A 335:153

    Article  CAS  Google Scholar 

  24. Hyde BG, Bevan DJM, Eyring L (1966) Philos Trans R Soc London A 259:583

    Article  Google Scholar 

  25. Gruen DM, Koehler WC, Katz JJ (1951) J Am Chem Soc 73:1475

    Article  CAS  Google Scholar 

  26. Putna ES, Vohs JM, Gorte RJ, Graham GW (1998) Catal Lett 54:17

    Article  CAS  Google Scholar 

  27. Chun W, Graham GW, Lupescu JA, McCabe RW, Koranne MM, Brezny R (2006) Catal Lett 106:95

    Article  CAS  Google Scholar 

  28. Sinev MY, Graham GW, Haack LP, Shelef M (1996) J Mater Res 11:1960

    Article  CAS  Google Scholar 

  29. Zhou G, Gorte RJ (2008) J Phys Chem B 112:9869

    Article  CAS  Google Scholar 

  30. Putna ES, Vohs JM, Gorte RJ (1997) Surf Sci 391:L1178

    Article  CAS  Google Scholar 

  31. Wang X, Gorte RJ, Wagner JP (2002) J Catal 212:225

    Article  CAS  Google Scholar 

  32. Kim T, Vohs JM, Gorte RJ (2006) Ind Eng Chem Res 45:5561

    Article  CAS  Google Scholar 

  33. Zhou G, Shah PR, Montini T, Fornasiero P, Gorte RJ (2007) Surf Sci 601:2512

    Article  CAS  Google Scholar 

  34. Shah PR, Kim T, Zhou G, Fornasiero P, Gorte RJ (2006) Chem Mater 18:5363

    Article  CAS  Google Scholar 

  35. Cordatos H, Ford D, Gorte RJ (1996) J Phys Chem 100:18128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Grant DE-FG02-85ER13350. S.T. was an NSF-REU student supported under Grant DMR 05-20020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Gorte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhmutsky, K., Zhou, G., Timothy, S. et al. The Water–Gas-Shift Reaction on Pd/Ceria–Praseodymia: The Effect of Redox Thermodynamics. Catal Lett 129, 61–65 (2009). https://doi.org/10.1007/s10562-009-9882-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9882-5

Keywords

Navigation