Skip to main content
Log in

Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

The synthesis of a series of sulfated zirconia catalysts was optimized using the isomerization of n-butane as a reaction probe. The normality of the H2SO4 solution used in the sulfation step was found to be the most important variable. A systematic change in the concentration of the H2SO4 solution showed that the optimum acid concentration was 0.25 N. When a catalyst prepared with this acid concentration was used, the conversion of n-butane at 200 °C was 35% at 5 min t-o-s. This was close to the thermodynamic equilibrium value of 56% conversion. This maximum was coincident with a catalyst with the highest specific surface area. An increase in the concentration of the H2SO4 solution above 0.25 N resulted in a decrease in both surface area and zirconia crystallinity. XPS studies showed a linear relationship between the H2SO4 solution concentration and the surface sulfur concentration. Bulk concentrations were determined by elemental analysis. The surface area increased to a maximum for a H2SO4 concentration of 0.25 N, while the concentration of bulk sulfur continued to increase when the acid concentration was progressively increased to 2.00 N. The use of a mordenite trap in the reactant stream resulted in an increase in n-butane conversion and a decrease in the rate of catalyst deactivation. XPS studies showed that the sulfur was present as sulfate species and that the oxidation state was not affected by the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Hino S Kobayashi K Arata (1979) J. Am. Chem. Soc. 101 6439 Occurrence Handle1:CAS:528:DyaE1MXmtFSlt78%3D

    CAS  Google Scholar 

  2. K Tanabe M Misono Y Ono H Hatori (1989) Stud. Surf. Sci. Catal. 51 199

    Google Scholar 

  3. K Tanabe H Hattori T Yamaguchi (1990) Crit. Rev. Surf. Chem. 1 1 Occurrence Handle1:CAS:528:DyaK3MXhsFWiu74%3D

    CAS  Google Scholar 

  4. T Yamaguchi (1990) Appl. Catal. 61 1 Occurrence Handle1:CAS:528:DyaK3cXltl2nsLg%3D

    CAS  Google Scholar 

  5. K. Arata (1990) Adv. Catal. 37 165 Occurrence Handle10.1016/S0360-0564(08)60365-X Occurrence Handle1:CAS:528:DyaK3MXhsFWhs70%3D

    Article  CAS  Google Scholar 

  6. O Moles (1992) Spec. Chem. 12 382 Occurrence Handle1:CAS:528:DyaK3sXhvF2is7c%3D

    CAS  Google Scholar 

  7. B.H Davis R.A Keogh R Srinivasan (1994) Catal. Today 20 219 Occurrence Handle1:CAS:528:DyaK2cXltFarsbw%3D

    CAS  Google Scholar 

  8. A Corma (1995) Chem. Rev. 95 559 Occurrence Handle1:CAS:528:DyaK2MXltlyktbg%3D

    CAS  Google Scholar 

  9. X. Song A. Sayari (1996) Catal. Rev. Sci. Eng. 38 329 Occurrence Handle1:CAS:528:DyaK28Xksleqt78%3D

    CAS  Google Scholar 

  10. K Arata M Hino (1990) Chem. Phys. 26 213 Occurrence Handle1:CAS:528:DyaK3MXmvFyhuw%3D%3D

    CAS  Google Scholar 

  11. M Risch E.E Wolf (2000) Catal. Today 62 255 Occurrence Handle1:CAS:528:DC%2BD3cXovFSksbg%3D

    CAS  Google Scholar 

  12. B Li R.D Gonzalez (1996) Ind. Eng. Chem. Res. 35 3141 Occurrence Handle1:CAS:528:DyaK28XkvFCntrk%3D

    CAS  Google Scholar 

  13. D.A Ward E.J Ko (1994) J. Catal. 150 18 Occurrence Handle1:CAS:528:DyaK2cXms1Clu78%3D

    CAS  Google Scholar 

  14. B Li R.D Gonzalez (1998) Catal Today 46 55 Occurrence Handle1:CAS:528:DyaK1cXntVGisrk%3D

    CAS  Google Scholar 

  15. B Li R.D Gonzalez (1998) Appl. Catal. A: Gen. 174 109 Occurrence Handle1:CAS:528:DyaK1cXnsFGjtbw%3D

    CAS  Google Scholar 

  16. K.B Fogash Z Hong J.M Kibe J.A Dumesic (1998) Appl. Catal. A: Gen. 172 107 Occurrence Handle1:CAS:528:DyaK1cXlslWmsb4%3D

    CAS  Google Scholar 

  17. S.Y Kim J.G Goodwin SuffixJr D Galloway (2000) Catal. Lett. 64 1 Occurrence Handle1:CAS:528:DC%2BD3cXntFyltw%3D%3D

    CAS  Google Scholar 

  18. R.L Marcus R.D Gonzalez E Kugler A Auroux (2003) Chem. Eng. Comm. 190 1601 Occurrence Handle1:CAS:528:DC%2BD3sXosVOit74%3D

    CAS  Google Scholar 

  19. S. Rezgui and B.C. Gates, Catal. Lett. (1996) 5

  20. B Li R.D Gonzalez (1997) Appl. Catal. A: Gen. 165 291 Occurrence Handle1:CAS:528:DyaK2sXns1eqsrc%3D

    CAS  Google Scholar 

  21. B Li R.D Gonzalez (1998) Catal. Lett. 54 5 Occurrence Handle1:CAS:528:DyaK1cXmtF2isbo%3D

    CAS  Google Scholar 

  22. C Li P.C Stair (1996) Catal. Lett. 36 119 Occurrence Handle1:CAS:528:DyaK28Xns1equw%3D%3D

    CAS  Google Scholar 

  23. R Marcus U Diebold R.D Gonzalez (2003) Catal. Lett. 86 151 Occurrence Handle1:CAS:528:DC%2BD3sXhslWhu7o%3D

    CAS  Google Scholar 

  24. H Toraya M Yoshimura S Somiya (1984) J. Am. Ceram. Soc. 67 C-119 Occurrence Handle1:CAS:528:DyaL2cXkslOmu7w%3D

    CAS  Google Scholar 

  25. H.P Klug L.E Alexander (1974) X-ray Diffraction Procedures Wiley New York

    Google Scholar 

  26. S.J Gregg K.S.W Sing (1997) Adsorption, Surface Area and Porosity Academic Press San Diego

    Google Scholar 

  27. K Balakrishnan R.D Gonzalez (1993) J. Catal. 144 395 Occurrence Handle1:CAS:528:DyaK2cXoslKluw%3D%3D

    CAS  Google Scholar 

  28. J.F Moulder W.F Stickle P.E Sobel K.D Bomben (1992) Handbook of X-ray Photoelectron Spectroscopy Perkin Elmer Corporation, Physical Electronic Division Eden Prarie

    Google Scholar 

  29. D Fărcaşiu J.Q Li S. Cameron (1997) Appl. Catal. A: Gen. 154 173

    Google Scholar 

  30. V Adeeva G.D Lei W.M.H Sachtler (1994) Appl. Catal. A: Gen. 118 L 11 Occurrence Handle1:CAS:528:DyaK2MXhtFegsr8%3D

    CAS  Google Scholar 

  31. F Garin L Seyfried P Girard G Maire A Abdulsamad J Sommer (1995) J. Catal. 151 26 Occurrence Handle1:CAS:528:DyaK2MXivVWmsr0%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutrufello, M.G., Diebold, U. & Gonzalez, R.D. Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts. Catal Lett 101, 5–13 (2005). https://doi.org/10.1007/s10562-005-3740-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-3740-x

Key words

Navigation