Skip to main content

Advertisement

Log in

The collection and processing of human brain tissue for research

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

To further understand the neuroanatomy, neurochemistry and neuropathology of the normal and diseased human brain, it is essential to have access to human brain tissue where the biological and chemical nature of the tissue is optimally preserved. We have established a human brain bank where brain tissue is optimally processed and stored in order to provide a resource to facilitate neuroscience research of the human brain in health and disease. A donor programme has been established in consultation with the community to provide for the post-mortem donation of brain tissue to the brain bank. We are using this resource of human brain tissue to further investigate the basis of normal neuronal functioning in the human brain as well as the mechanisms of neuronal dysfunction and degeneration in neurodegenerative diseases. We have established a protocol for the preservation of post-mortem adult human brain tissue firstly by snap-freezing unfixed brain tissue and secondly by chemical fixation and then storage of this tissue at −80°C in a human brain bank. Several research techniques such as receptor autoradiography, DNA and RNA analysis, are carried out on the unfixed tissue and immunohistochemical and histological analysis is carried out on the fixed human tissue. Comparison of tissue from normal control cases and from cases with neurodegenerative disorders is carried out in order to document the changes that occur in the brain in these disorders and to further investigate the underlying pathogenesis of these devastating neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Auditory cortex

AMY:

Amygdala

CERAD:

Consortium to establish a registry for Alzheimer’s disease

CG:

Cingulate gyrus

GP:

Globus pallidus

Hp:

Hippocampus

IP:

Inferior parietal cortex

ITG:

Inferior temporal gyrus

LC:

Locus ceruleus

MFG:

Middle frontal gyrus

OFG:

Orbito-frontal gyrus

SM:

Sensory–motor cortex

SNc:

Substantia nigra pars compacta

STG:

Superior temporal gyrus

SFG:

Superior frontal gyrus

THAL:

Thalamus

SP:

Superior parietal cortex

VC:

Visual cortex

VS:

Ventral striatum

References

  • Augood SJ, Faull RLM, Love DR, Emson PC (1996) Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington’s disease: a detailed cellular in situ hybridization study. Neuroscience 72(4):1023–1036

    Article  PubMed  CAS  Google Scholar 

  • Baer K, Waldvogel HJ, During MJ, Snell RG, Faull RLM, Rees MI (2003) Association of gephyrin and glycine receptors in the human brainstem and spinal cord: an immunohistochemical analysis. Neuroscience 122(3):773–784

    Article  PubMed  CAS  Google Scholar 

  • Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RLM, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60(5):557–569

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Penney EB, Pearson AG, van Roon-Mom WMC, Butterworth NJ, Dragunow M, Connor B, Faull RLM (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Nat Acad Sci 100(15):9023–9027

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RLM, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Villiger JW (1986a) Benzodiazepine receptors in the human spinal cord: a detailed anatomical and pharmacological study. Neuroscience 17(3):791–802

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Villiger JW (1986b) Heterogeneous distribution of benzodiazepine receptors in the human striatum: a quantitative autoradiographic study comparing the pattern of receptor labelling with the distribution of acetylcholinesterase staining. Brain Res 381:153–158

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Villiger JW (1987) Opiate receptors in the human spinal cord: a detailed anatomical study comparing the autoradiographic localization of [3H]diprenorphine binding sites with the laminar pattern of substance P, myelin and nissl staining. Neuroscience 20(2):395–407

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Villiger JW (1988) Multiple benzodiazepine receptors in the human basal ganglia: a detailed pharmacological and anatomical study. Neuroscience 24:433–451

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Dragunow M, Villiger JW (1989a) The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment. Brain Res 488(1–2):381–386

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Villiger JW, Dragunow M (1989b) Neurotensin receptors in the human spinal cord: a quantitative autoradiographic study. Neuroscience 29(3):603–613

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Villiger JW, Holford NHG (1987) Benzodiazepine receptors in the human cerebellar cotex: a quantitative autoradiographic and pharmacological study demonstrating the predominance of type 1 receptors. Brain Res 411:379–385

    Article  PubMed  CAS  Google Scholar 

  • Faull RLM, Waldvogel HJ, Nicholson LF, Synek BJ (1993) The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington’s disease and in the quinolinic acid-lesioned rat. Prog Brain Res 99:105–123

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Faull RLM, Dragunow M (1993) Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 56(3):523–527

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Faull RLM, Bullock JY, Jansen K, Mee EW, Walker EB, Synek BJ, Dragunow M (1996a) Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res 710(1–2):56–68

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Faull RLM, Dragunow M (1996b) Localisation of the adenosine uptake site in the human brain: a comparison with the distribution of adenosine A1 receptors. Brain Res 710(1–2):79–91

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RLM (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77(2):299–318

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RLM (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97(3):505–519

    Article  PubMed  CAS  Google Scholar 

  • Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, Hollingsworth ZR, Collin F, Synek B, Holmans PA, Young AB, Wexler NS, Delorenzi M, Kooperberg C, Augood SJ, Faull RLM, Olson JM, Jones L, Luthi-Carter R (2006) Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 15(6):965–977

    Article  PubMed  CAS  Google Scholar 

  • McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland D, Arai H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T, Dubois B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa E, Halliday G, Hansen LA, Hardy J, Iwatsubo T, Kalaria RN, Kaufer D, Kenny RA, Korczyn A, Kosaka K, Lee VM, Lees A, Litvan I, Londos E, Lopez OL, Minoshima S, Mizuno Y, Molina JA, Mukaetova-Ladinska EB, Pasquier F, Perry RH, Schulz JB, Trojanowski JQ, Yamada M (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Munkle MC, Waldvogel HJ, Faull RLM (2000) The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. J Chem Neuroanat 19(3):155–173

    Article  PubMed  CAS  Google Scholar 

  • Pearson AG, Curtis MA, Waldvogel HJ, Faull RLM, Dragunow M (2005) Activating transcription factor 2 expression in the adult human brain: association with both neurodegeneration and neurogenesis. Neuroscience 133(2):437–451

    Article  PubMed  CAS  Google Scholar 

  • Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ, Graybiel AM, Faull RLM (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130(Pt 1):206–221

    PubMed  Google Scholar 

  • van Roon-Mom WM, Reid SJ, Faull RLM, Snell RG (2005) TATA-binding protein in neurodegenerative disease. Neuroscience 133(4):863–872

    Article  PubMed  CAS  Google Scholar 

  • van Roon-Mom WM, Hogg VM, Tippett LJ, Faull RLM (2006) Aggregate distribution in frontal and motor cortex in Huntington’s disease brain. Neuroreport 17(6):667–670

    Article  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP (1985) Neuropathological classification of Huntington’s disease. J Neuropath Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, Aizawa H, Ge P, DiFiglia M, Mckee AC, MacDonald M, Gusella JF, Landwehrmeyer GB, Bird ED, Richardson EP, Hedley-Whyte ET (1995) An improved approach to prepare human brains for research. J Neuropath Exp Neurol 54:42–56

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Faull RLM (1993) Compartmentalization of parvalbumin immunoreactivity in the human striatum. Brain Res 610:311–316

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Faull RLM, Jansen KLR, Dragunow M, Richards JG, Mohler H, Streit P (1990) GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: an autoradiographic and immunohistochemical study at the light and electron microscopic levels. Neuroscience 39:361–385

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Kubota Y, Fritschy JM, Mohler H, Faull RLM (1999) Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: an autoradiographic and immunohistochemical study. J Comp Neurol 415(3):313–340

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Baer K, Snell RG, During MJ, Faull RLM, Rees MI (2003) Distribution of gephyrin in the human brain: An immunohistochemical analysis. Neuroscience 116(1):145–156

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RLM (2004) Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha 1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 470(4):339–356

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel HJ, Curtis MA, Baer K, Rees MI, Faull RLM (2006) Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc 1(6):2719–2732

    Article  PubMed  CAS  Google Scholar 

  • Whitefield JE, Williams L, Snow K, Dixon J, Winship I, Stapleton PM, Faull RM, Love DR (1996) Molecular analysis of the Huntingtons disease gene in New Zealand. NZ Med J 109:27–30

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Neurological Foundation of New Zealand, the Health Research Council of New Zealand, The University of Auckland, The Mathew Oswin Memorial Trust, the Neurological Associations and, most importantly the brain donors and their families who have all contributed to making this Human Brain Bank possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Waldvogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldvogel, H.J., Bullock, J.Y., Synek, B.J. et al. The collection and processing of human brain tissue for research. Cell Tissue Banking 9, 169–179 (2008). https://doi.org/10.1007/s10561-008-9068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-008-9068-1

Keywords

Navigation