Skip to main content

Advertisement

Log in

Driving transcriptional regulators in melanoma metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The progression of melanoma toward the metastatic phenotype occurs in a defined stepwise manner. While many molecular changes take place early in melanoma development, progression toward the malignant phenotype, most notably during the transition from the radial growth phase (RGP) to the vertical growth phase (VGP) involves deregulated expression of several transcription factors. For example, the switch from RGP to VGP is associated with the loss of the transcription factor AP2α and gain of transcriptional activity of cAMP-responsive element binding protein. Together with the upregulation of microphthalmia-associated transcription factor, activating transcription factor 2, nuclear factor kappa B, and other transcription factors, these changes lead to dysregulated expression or function of important cellular adhesion molecules, matrix degrading enzymes, survival factors, as well as other factors leading to metastatic melanoma. Additionally, recent evidence suggests that microRNAs and RNA editing machinery influence the expression of transcription factors or are regulated themselves by transcription factors. Many of the downstream signaling molecules regulated by transcription factors, such as protease activated receptor-1, interleukin-8, and MCAM/MUC18 represent new treatment prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62(1), 10–29.

    Google Scholar 

  2. Balch, C. M., Gershenwald, J. E., Soong, S. J., Thompson, J. F., Atkins, M. B., Byrd, D. R., et al. (2009). Final version of 2009 AJCC melanoma staging and classification. Jounal Clinical Oncology, 27(36), 6199–6206.

    Google Scholar 

  3. Clark, W. H., Jr., Elder, D. E., Guerry, D. T., Epstein, M. N., Greene, M. H., & Van Horn, M. (1984). A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Human Pathology, 15(12), 1147–1165.

    PubMed  Google Scholar 

  4. Satyamoorthy, K., & Herlyn, M. (2002). Cellular and molecular biology of human melanoma. Cancer Biology & Therapy, 1(1), 14–17.

    CAS  Google Scholar 

  5. Leslie, M. C., & Bar-Eli, M. (2005). Regulation of gene expression in melanoma: new approaches for treatment. Journal Cell Biochemistry, 94(1), 25–38.

    CAS  Google Scholar 

  6. Greene, V. R., Johnson, M. M., Grimm, E. A., & Ellerhorst, J. A. (2009). Frequencies of NRAS and BRAF mutations increase from the radial to the vertical growth phase in cutaneous melanoma. Journal Investigation Dermatology, 129(6), 1483–1488.

    CAS  Google Scholar 

  7. Villanueva, J., & Herlyn, M. (2008). Melanoma and the tumor microenvironment. Current Oncology Reports, 10(5), 439–446.

    PubMed  CAS  Google Scholar 

  8. Chin, L. (2003). The genetics of malignant melanoma: Lessons from mouse and man. Nature Revista Cancer, 3(8), 559–570.

    CAS  Google Scholar 

  9. Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445(7130), 851–857.

    PubMed  CAS  Google Scholar 

  10. Leiter, U., Meier, F., Schittek, B., & Garbe, C. (2004). The natural course of cutaneous melanoma. Journal Surgery Oncology, 86(4), 172–178.

    Google Scholar 

  11. Patel, J. K., Didolkar, M. S., Pickren, J. W., & Moore, R. H. (1978). Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. The American Journal of Surgery, 135(6), 807–810.

    CAS  Google Scholar 

  12. Fidler, I. J. (2002). Critical determinants of metastasis. Seminars in Cancer Biology, 12(2), 89–96.

    PubMed  Google Scholar 

  13. Williams, T., Admon, A., Luscher, B., & Tjian, R. (1988). Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Developments, 2(12A), 1557–1569.

    CAS  Google Scholar 

  14. Gravel, M., Gao, E., Hervouet-Zeiber, C., Parsons, V., & Braun, P. E. (2000). Transcriptional regulation of 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene expression by cyclic AMP in C6 cells. Journal of Neurochemistry, 75(5), 1940–1950.

    PubMed  CAS  Google Scholar 

  15. Buettner, R., Kannan, P., Imhof, A., Bauer, R., Yim, S. O., Glockshuber, R., et al. (1993). An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Molecular Cell Biology, 13(7), 4174–4185.

    CAS  Google Scholar 

  16. Imagawa, M., Chiu, R., & Karin, M. (1987). Transcription factor AP-2 mediates induction by two different signal-transduction pathways: Protein kinase C and cAMP. Cell, 51(2), 251–260.

    PubMed  CAS  Google Scholar 

  17. Schorle, H., Meier, P., Buchert, M., Jaenisch, R., & Mitchell, P. J. (1996). Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature, 381(6579), 235–238.

    PubMed  CAS  Google Scholar 

  18. Luscher, B., Mitchell, P. J., Williams, T., & Tjian, R. (1989). Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes & Development, 3(10), 1507–1517.

    CAS  Google Scholar 

  19. Zhang, J., & Williams, T. (2003). Identification and regulation of tissue-specific cis-acting elements associated with the human AP-2alpha gene. Development Dynamics, 228(2), 194–207.

    CAS  Google Scholar 

  20. Zeng, Y. X., Somasundaram, K., & el-Deiry, W. S. (1997). AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nature Genetics, 15(1), 78–82.

    PubMed  CAS  Google Scholar 

  21. McPherson, L. A., Loktev, A. V., & Weigel, R. J. (2002). Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. Journal Biology Chemistry, 277(47), 45028–45033.

    CAS  Google Scholar 

  22. Wajapeyee, N., & Somasundaram, K. (2003). Cell cycle arrest and apoptosis induction by activator protein 2alpha (AP-2alpha) and the role of p53 and p21WAF1/CIP1 in AP-2alpha-mediated growth inhibition. Journal Biology Chemistry, 278(52), 52093–52101.

    CAS  Google Scholar 

  23. Tellez, C. S., Davis, D. W., Prieto, V. G., Gershenwald, J. E., Johnson, M. M., McCarty, M. F., et al. (2007). Quantitative analysis of melanocytic tissue array reveals inverse correlation between activator protein-2alpha and protease-activated receptor-1 expression during melanoma progression. Journal Investment Dermatology, 127(2), 387–393.

    CAS  Google Scholar 

  24. Berger, A. J., Davis, D. W., Tellez, C., Prieto, V. G., Gershenwald, J. E., Johnson, M. M., et al. (2005). Automated quantitative analysis of activator protein-2alpha subcellular expression in melanoma tissue microarrays correlates with survival prediction. Cancer Research, 65(23), 11185–11192.

    PubMed  CAS  Google Scholar 

  25. Karjalainen, J. M., Kellokoski, J. K., Eskelinen, M. J., Alhava, E. M., & Kosma, V. M. (1998). Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. Journal of Clinical Oncology, 16(11), 3584–3591.

    PubMed  CAS  Google Scholar 

  26. Melnikova, V. O., Dobroff, A. S., Zigler, M., Villares, G. J., Braeuer, R. R., Wang, H., et al. (2010). CREB inhibits AP-2alpha expression to regulate the malignant phenotype of melanoma. PloS One, 5(8), e12452.

    PubMed  Google Scholar 

  27. Huang, S., Jean, D., Luca, M., Tainsky, M. A., & Bar-Eli, M. (1998). Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. The EMBO Journal, 17(15), 4358–4369.

    PubMed  CAS  Google Scholar 

  28. Gershenwald, J. E., Sumner, W., Calderone, T., Wang, Z., Huang, S., & Bar-Eli, M. (2001). Dominant-negative transcription factor AP-2 augments SB-2 melanoma tumor growth in vivo. Oncogene, 20(26), 3363–3375.

    PubMed  CAS  Google Scholar 

  29. Tellez, C., McCarty, M., Ruiz, M., & Bar-Eli, M. (2003). Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. Journal Biology Chemistry, 278(47), 46632–46642.

    CAS  Google Scholar 

  30. Jean, D., Gershenwald, J. E., Huang, S., Luca, M., Hudson, M. J., Tainsky, M. A., et al. (1998). Loss of AP-2 results in up-regulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. Journal Biology Chemistry, 273(26), 16501–16508.

    CAS  Google Scholar 

  31. Bar-Eli, M. (1997). Molecular mechanisms of melanoma metastasis. Journal Cell Physiology, 173(2), 275–278.

    CAS  Google Scholar 

  32. Ruiz, M., Pettaway, C., Song, R., Stoeltzing, O., Ellis, L., & Bar-Eli, M. (2004). Activator protein 2alpha inhibits tumorigenicity and represses vascular endothelial growth factor transcription in prostate cancer cells. Cancer Research, 64(2), 631–638.

    PubMed  CAS  Google Scholar 

  33. Lassam, N., & Bickford, S. (1992). Loss of c-kit expression in cultured melanoma cells. Oncogene, 7(1), 51–56.

    PubMed  CAS  Google Scholar 

  34. Yamamoto, K., Tojo, A., Aoki, N., & Shibuya, M. (1993). Characterization of the promoter region of the human c-kit proto-oncogene. Japan Journal Cancer Research, 84(11), 1136–1144.

    CAS  Google Scholar 

  35. Pacifico, M. D., Grover, R., Richman, P. I., Daley, F. M., Buffa, F., & Wilson, G. D. (2005). Development of a tissue array for primary melanoma with long-term follow-up: Discovering melanoma cell adhesion molecule as an important prognostic marker. Plast Reconstruction Surgery, 115(2), 367–375.

    CAS  Google Scholar 

  36. Shih, I. M., Elder, D. E., Speicher, D., Johnson, J. P., & Herlyn, M. (1994). Isolation and functional characterization of the A32 melanoma-associated antigen. Cancer Research, 54(9), 2514–2520.

    PubMed  CAS  Google Scholar 

  37. Ellis, H. A., & Peart, K. M. (1976). Iliac bone marrow mast cells in relation to the renal osteodystrophy of patients treated by haemodialysis. Journal of Clinical Pathology, 29(6), 502–516.

    PubMed  CAS  Google Scholar 

  38. Xie, S., Luca, M., Huang, S., Gutman, M., Reich, R., Johnson, J. P., et al. (1997). Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Research, 57(11), 2295–2303.

    PubMed  CAS  Google Scholar 

  39. Natali, P. G., Nicotra, M. R., Digiesi, G., Cavaliere, R., Bigotti, A., Trizio, D., et al. (1994). Expression of gp185HER-2 in human cutaneous melanoma: Implications for experimental immunotherapeutics. International Journal of Cancer, 56(3), 341–346.

    CAS  Google Scholar 

  40. Melnikova, V. O., Villares, G. J., & Bar-Eli, M. (2008). Emerging roles of PAR-1 and PAFR in melanoma metastasis. Cancer Microenvironment, 1(1), 103–111.

    PubMed  Google Scholar 

  41. Fischer, E. G., Ruf, W., & Mueller, B. M. (1995). Tissue factor-initiated thrombin generation activates the signaling thrombin receptor on malignant melanoma cells. Cancer Research, 55(8), 1629–1632.

    PubMed  CAS  Google Scholar 

  42. Vu, T. K., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell, 64(6), 1057–1068.

    PubMed  CAS  Google Scholar 

  43. Macfarlane, S. R., Seatter, M. J., Kanke, T., Hunter, G. D., & Plevin, R. (2001). Proteinase-activated receptors. Pharmacology Review, 53(2), 245–282.

    CAS  Google Scholar 

  44. Grand, R. J., Turnell, A. S., & Grabham, P. W. (1996). Cellular consequences of thrombin-receptor activation. Biochemistry Journal, 313(Pt 2), 353–368.

    CAS  Google Scholar 

  45. Villares, G. J., Zigler, M., Wang, H., Melnikova, V. O., Wu, H., Friedman, R., et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Research, 68(21), 9078–9086.

    PubMed  CAS  Google Scholar 

  46. Zucker, S., Conner, C., DiMassmo, B. I., Ende, H., Drews, M., Seiki, M., et al. (1995). Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. Journal Biology Chemistry, 270(40), 23730–23738.

    CAS  Google Scholar 

  47. Yoshida, E., Verrusio, E. N., Mihara, H., Oh, D., & Kwaan, H. C. (1994). Enhancement of the expression of urokinase-type plasminogen activator from PC-3 human prostate cancer cells by thrombin. Cancer Research, 54(12), 3300–3304.

    PubMed  CAS  Google Scholar 

  48. Melnikova, V. O., Balasubramanian, K., Villares, G. J., Dobroff, A. S., Zigler, M., Wang, H., et al. (2009). Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. Journal Biology Chemistry, 284(42), 28845–28855.

    CAS  Google Scholar 

  49. Im, S. Y., Ko, H. M., Kim, J. W., Lee, H. K., Ha, T. Y., Lee, H. B., et al. (1996). Augmentation of tumor metastasis by platelet-activating factor. Cancer Research, 56(11), 2662–2665.

    PubMed  CAS  Google Scholar 

  50. Melnikova, V. O., Mourad-Zeidan, A. A., Lev, D. C., & Bar-Eli, M. (2006). Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. Journal Biology Chemistry, 281(5), 2911–2922.

    CAS  Google Scholar 

  51. Axelrad, T. W., Deo, D. D., Ottino, P., Van Kirk, J., Bazan, N. G., Bazan, H. E., et al. (2004). Platelet-activating factor (PAF) induces activation of matrix metalloproteinase 2 activity and vascular endothelial cell invasion and migration. The FASEB Journal, 18(3), 568–570.

    CAS  Google Scholar 

  52. Villares, G. J., Dobroff, A. S., Wang, H., Zigler, M., Melnikova, V. O., Huang, L., et al. (2009). Overexpression of protease-activated receptor-1 contributes to melanoma metastasis via regulation of connexin 43. Cancer Research, 69(16), 6730–6737.

    PubMed  CAS  Google Scholar 

  53. Pollmann, M. A., Shao, Q., Laird, D. W., & Sandig, M. (2005). Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Research, 7(4), R522–R534.

    PubMed  CAS  Google Scholar 

  54. el-Sabban, M. E., & Pauli, B. U. (1994). Adhesion-mediated gap junctional communication between lung-metastatatic cancer cells and endothelium. Invasion & Metastasis, 14(1-6), 164–176.

    CAS  Google Scholar 

  55. Villares, G. J., Zigler, M., Dobroff, A. S., Wang, H., Song, R., Melnikova, V. O., et al. (2011). Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype. Processes National Academy Science U S A, 108(2), 626–631.

    CAS  Google Scholar 

  56. Bohm, M., Moellmann, G., Cheng, E., Alvarez-Franco, M., Wagner, S., Sassone-Corsi, P., et al. (1995). Identification of p90RSK as the probable CREB-Ser133 kinase in human melanocytes. Cell Growth Differences, 6(3), 291–302.

    CAS  Google Scholar 

  57. Rutberg, S. E., Goldstein, I. M., Yang, Y. M., Stackpole, C. W., & Ronai, Z. (1994). Expression and transcriptional activity of AP-1, CRE, and URE binding proteins in B16 mouse melanoma subclones. Molecular Carcinogenesis, 10(2), 82–87.

    PubMed  CAS  Google Scholar 

  58. Ravnskjaer, K., Kester, H., Liu, Y., Zhang, X., Lee, D., Yates, J. R., 3rd, et al. (2007). Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. The EMBO Journal, 26(12), 2880–2889.

    PubMed  CAS  Google Scholar 

  59. Shaywitz, A. J., & Greenberg, M. E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual Review of Biochemistry, 68, 821–861.

    PubMed  CAS  Google Scholar 

  60. Meyer, T. E., & Habener, J. F. (1993). Cyclic adenosine 3′,5′-monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocrine Review, 14(3), 269–290.

    CAS  Google Scholar 

  61. Mayr, B., & Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Review Molecular Cell Biology, 2(8), 599–609.

    CAS  Google Scholar 

  62. Iourgenko, V., Zhang, W., Mickanin, C., Daly, I., Jiang, C., Hexham, J. M., et al. (2003). Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Process National Academy Science U S A, 100(21), 12147–12152.

    CAS  Google Scholar 

  63. Montminy, M. (1997). Transcriptional regulation by cyclic AMP. Annual Review of Biochemistry, 66, 807–822.

    PubMed  CAS  Google Scholar 

  64. Melnikova, V. O., & Bar-Eli, M. (2008). Transcriptional control of the melanoma malignant phenotype. Cancer Biology & Therapy, 7(7), 997–1003.

    CAS  Google Scholar 

  65. White, P. C., Shore, A. M., Clement, M., McLaren, J., Soeiro, I., Lam, E. W., et al. (2006). Regulation of cyclin D2 and the cyclin D2 promoter by protein kinase A and CREB in lymphocytes. Oncogene, 25(15), 2170–2180.

    PubMed  CAS  Google Scholar 

  66. Zhang, X., Odom, D. T., Koo, S. H., Conkright, M. D., Canettieri, G., Best, J., et al. (2005). Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Process National Academy Science U S A, 102(12), 4459–4464.

    CAS  Google Scholar 

  67. Xie, S., Price, J. E., Luca, M., Jean, D., Ronai, Z., & Bar-Eli, M. (1997). Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene, 15(17), 2069–2075.

    PubMed  CAS  Google Scholar 

  68. Jean, D., & Bar-Eli, M. (2000). Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Molecular Cell Biochemistry, 212(1–2), 19–28.

    CAS  Google Scholar 

  69. Jean, D., & Bar-Eli, M. (2001). Targeting the ATF-1/CREB transcription factors by single chain Fv fragment in human melanoma: potential modality for cancer therapy. Criticism Review Immunology, 21(1–3), 275–286.

    CAS  Google Scholar 

  70. Jean, D., Tellez, C., Huang, S., Davis, D. W., Bruns, C. J., McConkey, D. J., et al. (2000). Inhibition of tumor growth and metastasis of human melanoma by intracellular anti-ATF-1 single chain Fv fragment. Oncogene, 19(22), 2721–2730.

    PubMed  CAS  Google Scholar 

  71. Jean, D., Harbison, M., McConkey, D. J., Ronai, Z., & Bar-Eli, M. (1998). CREB and its associated proteins act as survival factors for human melanoma cells. Journal Biology Chemistry, 273(38), 24884–24890.

    CAS  Google Scholar 

  72. Dobroff, A. S., Wang, H., Melnikova, V. O., Villares, G. J., Zigler, M., Huang, L., et al. (2009). Silencing cAMP-response element-binding protein (CREB) identifies CYR61 as a tumor suppressor gene in melanoma. Journal Biology Chemistry, 284(38), 26194–26206.

    CAS  Google Scholar 

  73. Brigstock, D. R. (2003). The CCN family: A new stimulus package. The Journal of Endocrinology, 178(2), 169–175.

    PubMed  CAS  Google Scholar 

  74. Bertolotto, C., Abbe, P., Hemesath, T. J., Bille, K., Fisher, D. E., Ortonne, J. P., et al. (1998). Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. The Journal of Cell Biology, 142(3), 827–835.

    PubMed  CAS  Google Scholar 

  75. Price, E. R., Horstmann, M. A., Wells, A. G., Weilbaecher, K. N., Takemoto, C. M., Landis, M. W., et al. (1998). alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. Journal Biology Chemistry, 273(49), 33042–33047.

    CAS  Google Scholar 

  76. Nyormoi, O., & Bar-Eli, M. (2003). Transcriptional regulation of metastasis-related genes in human melanoma. Clinical & Experimental Metastasis, 20(3), 251–263.

    CAS  Google Scholar 

  77. Zhuang, L., Lee, C. S., Scolyer, R. A., McCarthy, S. W., Zhang, X. D., Thompson, J. F., et al. (2007). Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Modern Pathology, 20(4), 416–426.

    PubMed  CAS  Google Scholar 

  78. Fuse, N., Yasumoto, K., Suzuki, H., Takahashi, K., & Shibahara, S. (1996). Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochemistry Biophysics Research Communication, 219(3), 702–707.

    CAS  Google Scholar 

  79. Widlund, H. R., & Fisher, D. E. (2003). Microphthalamia-associated transcription factor: A critical regulator of pigment cell development and survival. Oncogene, 22(20), 3035–3041.

    PubMed  CAS  Google Scholar 

  80. Ganss, R., Schutz, G., & Beermann, F. (1994). The mouse tyrosinase gene. Promoter modulation by positive and negative regulatory elements. Journal Biology Chemistry, 269(47), 29808–29816.

    CAS  Google Scholar 

  81. Dorsky, R. I., Moon, R. T., & Raible, D. W. (1998). Control of neural crest cell fate by the Wnt signalling pathway. Nature, 396(6709), 370–373.

    PubMed  CAS  Google Scholar 

  82. McCallion, A. S., & Chakravarti, A. (2001). EDNRB/EDN3 and Hirschsprung disease type II. Pigments Cell Research, 14(3), 161–169.

    CAS  Google Scholar 

  83. Lang, D., & Epstein, J. A. (2003). Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Human Molecular Genetics, 12(8), 937–945.

    PubMed  CAS  Google Scholar 

  84. King, R., Googe, P. B., Weilbaecher, K. N., Mihm, M. C., Jr., & Fisher, D. E. (2001). Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. American Journal Surgery Pathology, 25(1), 51–57.

    CAS  Google Scholar 

  85. Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436(7047), 117–122.

    PubMed  CAS  Google Scholar 

  86. Widlund, H. R., Horstmann, M. A., Price, E. R., Cui, J., Lessnick, S. L., Wu, M., et al. (2002). Beta-catenin-induced melanoma growth requires the downstream target microphthalmia-associated transcription factor. The Journal of Cell Biology, 158(6), 1079–1087.

    PubMed  CAS  Google Scholar 

  87. Chien, A. J., Moore, E. C., Lonsdorf, A. S., Kulikauskas, R. M., Rothberg, B. G., Berger, A. J., et al. (2009). Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings National Academy Science U S A, 106(4), 1193–1198.

    CAS  Google Scholar 

  88. Takeda, K., Yasumoto, K., Takada, R., Takada, S., Watanabe, K., Udono, T., et al. (2000). Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. Journal Biology Chemistry, 275(19), 14013–14016.

    CAS  Google Scholar 

  89. Asundi, J., Reed, C., Arca, J., McCutcheon, K., Ferrando, R., Clark, S., et al. (2011). An antibody–drug conjugate targeting the endothelin B receptor for the treatment of melanoma. Clin Cancer Res, 17(5), 965–975.

    Google Scholar 

  90. Fuchs, S., Amiel, J., Claudel, S., Lyonnet, S., Corvol, P., & Pinet, F. (2001). Functional characterization of three mutations of the endothelin B receptor gene in patients with Hirschsprung’s disease: Evidence for selective loss of Gi coupling. Molecular Medical, 7(2), 115–124.

    CAS  Google Scholar 

  91. Imokawa, G., Yada, Y., & Kimura, M. (1996). Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochemistry Journal, 314(Pt 1), 305–312.

    CAS  Google Scholar 

  92. Ji, M., & Andrisani, O. M. (2005). High-level activation of cyclic AMP signaling attenuates bone morphogenetic protein 2-induced sympathoadrenal lineage development and promotes melanogenesis in neural crest cultures. Molecular Cell Biology, 25(12), 5134–5145.

    CAS  Google Scholar 

  93. Busca, R., Berra, E., Gaggioli, C., Khaled, M., Bille, K., Marchetti, B., et al. (2005). Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. The Journal of Cell Biology, 170(1), 49–59.

    PubMed  CAS  Google Scholar 

  94. McGill, G. G., Horstmann, M., Widlund, H. R., Du, J., Motyckova, G., Nishimura, E. K., et al. (2002). Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell, 109(6), 707–718.

    PubMed  CAS  Google Scholar 

  95. Du, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., et al. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 6(6), 565–576.

    PubMed  CAS  Google Scholar 

  96. Carreira, S., Goodall, J., Denat, L., Rodriguez, M., Nuciforo, P., Hoek, K. S., et al. (2006). Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes & Development, 20(24), 3426–3439.

    CAS  Google Scholar 

  97. Jeffs, A. R., Glover, A. C., Slobbe, L. J., Wang, L., He, S., Hazlett, J. A., et al. (2009). A gene expression signature of invasive potential in metastatic melanoma cells. PloS One, 4(12), e8461.

    PubMed  Google Scholar 

  98. Cheli, Y., Giuliano, S., Botton, T., Rocchi, S., Hofman, V., Hofman, P., et al. (2011). Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene, 30(20), 2307-2318.

    Google Scholar 

  99. Cheli, Y., Giuliano, S., Fenouille, N., Allegra, M., Hofman, V., Hofman, P., et al. (2012). Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene, 31, 2461–2470.

    Google Scholar 

  100. Hai, T. W., Liu, F., Coukos, W. J., & Green, M. R. (1989). Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes & Development, 3(12B), 2083–2090.

    CAS  Google Scholar 

  101. Bhoumik, A., Huang, T. G., Ivanov, V., Gangi, L., Qiao, R. F., Woo, S. L., et al. (2002). An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. Journal Clinical Investment, 110(5), 643–650.

    CAS  Google Scholar 

  102. Kaszubska, W., Hooft van Huijsduijnen, R., Ghersa, P., DeRaemy-Schenk, A. M., Chen, B. P., Hai, T., et al. (1993). Cyclic AMP-independent ATF family members interact with NF-kappa B and function in the activation of the E-selectin promoter in response to cytokines. Molecular Cell Biology, 13(11), 7180–7190.

    CAS  Google Scholar 

  103. Berger, A. J., Kluger, H. M., Li, N., Kielhorn, E., Halaban, R., Ronai, Z., et al. (2003). Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Research, 63(23), 8103–8107.

    PubMed  CAS  Google Scholar 

  104. Gupta, S., Campbell, D., Derijard, B., & Davis, R. J. (1995). Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science, 267(5196), 389–393.

    PubMed  CAS  Google Scholar 

  105. Kim, S. J., Wagner, S., Liu, F., O’Reilly, M. A., Robbins, P. D., & Green, M. R. (1992). Retinoblastoma gene product activates expression of the human TGF-beta 2 gene through transcription factor ATF-2. Nature, 358(6384), 331–334.

    PubMed  CAS  Google Scholar 

  106. Shimizu, M., Nomura, Y., Suzuki, H., Ichikawa, E., Takeuchi, A., Suzuki, M., et al. (1998). Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Experimental Cell Research, 239(1), 93–103.

    PubMed  CAS  Google Scholar 

  107. Tsai, E. Y., Jain, J., Pesavento, P. A., Rao, A., & Goldfeld, A. E. (1996). Tumor necrosis factor alpha gene regulation in activated T cells involves ATF-2/Jun and NFATp. Molecular Cell Biology, 16(2), 459–467.

    CAS  Google Scholar 

  108. Gould Rothberg, B. E., Berger, A. J., Molinaro, A. M., Subtil, A., Krauthammer, M. O., Camp, R. L., et al. (2009). Melanoma prognostic model using tissue microarrays and genetic algorithms. Journal of Clinical Oncology, 27(34), 5772–5780.

    PubMed  Google Scholar 

  109. Lau, E., Kluger, H., Varsano, T., Lee, K., Scheffler, I., Rimm, D. L., et al. (2012) PKCepsilon promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Cell, 148(3), 543–555.

    Google Scholar 

  110. Shah, M., Bhoumik, A., Goel, V., Dewing, A., Breitwieser, W., Kluger, H., et al. (2010). A role for ATF2 in regulating MITF and melanoma development. PLoS Genet, 6(12), e1001258.

    Google Scholar 

  111. Perkins, N. D. (2012). The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer, 12(2), 121–132.

    Google Scholar 

  112. Karin, M., & Greten, F. R. (2005). NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nature Review Immunology, 5(10), 749–759.

    CAS  Google Scholar 

  113. Prakash, M., Kale, S., Ghosh, I., Kundu, G. C., & Datta, K. (2011). Hyaluronan-binding protein 1 (HABP1/p32/gC1qR) induces melanoma cell migration and tumor growth by NF-kappa B dependent MMP-2 activation through integrin alpha(v)beta(3) interaction. Cell Signal, 23(10), 1563–1577.

    Google Scholar 

  114. Persad, S., & Dedhar, S. (2003). The role of integrin-linked kinase (ILK) in cancer progression. Cancer Metastasis Review, 22(4), 375–384.

    CAS  Google Scholar 

  115. Wani, A. A., Jafarnejad, S. M., Zhou, J., & Li, G. (2011). Integrin-linked kinase regulates melanoma angiogenesis by activating NF-kappaB/interleukin-6 signaling pathway. Oncogene, 30(24), 2778–2788.

    Google Scholar 

  116. Feng, Y., Barile, E., De, S. K., Stebbins, J. L., Cortez, A., Aza-Blanc, P., et al. (2011) Effective inhibition of melanoma by BI-69A11 is mediated by dual targeting of the AKT and NF-kappaB pathways. Pigment Cell Melanoma Res, 24(4), 703–713.

    Google Scholar 

  117. Amschler, K., Schon, M. P., Pletz, N., Wallbrecht, K., Erpenbeck, L., & Schon, M. (2010) NF-kappaB inhibition through proteasome inhibition or IKKbeta blockade increases the susceptibility of melanoma cells to cytostatic treatment through distinct pathways. J Invest Dermatol, 130(4), 1073-1086.

    Google Scholar 

  118. Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biology, 3(3), e85.

    PubMed  Google Scholar 

  119. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.

    PubMed  CAS  Google Scholar 

  120. Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.

    PubMed  CAS  Google Scholar 

  121. Krol, J., Loedige, I., & Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 11(9), 597–610.

    Google Scholar 

  122. Mueller, D. W., & Bosserhoff, A. K. (2009). Role of miRNAs in the progression of malignant melanoma. British Journal of Cancer, 101(4), 551–556.

    PubMed  CAS  Google Scholar 

  123. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: tools for microRNA genomics. Nucleic Acids Research, 36(Database issue), D154–D158.

    Google Scholar 

  124. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.

    PubMed  CAS  Google Scholar 

  125. Gaur, A., Jewell, D. A., Liang, Y., Ridzon, D., Moore, J. H., Chen, C., et al. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Research, 67(6), 2456–2468.

    PubMed  CAS  Google Scholar 

  126. Blower, P. E., Verducci, J. S., Lin, S., Zhou, J., Chung, J. H., Dai, Z., et al. (2007). MicroRNA expression profiles for the NCI-60 cancer cell panel. Molecular Cancer Therapy, 6(5), 1483–1491.

    CAS  Google Scholar 

  127. Mueller, D. W., Rehli, M., & Bosserhoff, A. K. (2009). miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. Journal Investment Dermatology, 129(7), 1740–1751.

    CAS  Google Scholar 

  128. Haflidadottir, B. S., Bergsteinsdottir, K., Praetorius, C., & Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS One, 5(7), e11574.

    Google Scholar 

  129. Bemis, L. T., Chen, R., Amato, C. M., Classen, E. H., Robinson, S. E., Coffey, D. G., et al. (2008). MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Research, 68(5), 1362–1368.

    PubMed  CAS  Google Scholar 

  130. Segura, M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., et al. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceeding National Academy Science U S A, 106(6), 1814–1819.

    CAS  Google Scholar 

  131. Felicetti, F., Errico, M. C., Bottero, L., Segnalini, P., Stoppacciaro, A., Biffoni, M., et al. (2008). The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Research, 68(8), 2745–2754.

    PubMed  CAS  Google Scholar 

  132. Chen, J., Feilotter, H. E., Pare, G. C., Zhang, X., Pemberton, J. G., Garady, C., et al. (2010). MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. American Journal of Pathology, 176(5), 2520–2529.

    Google Scholar 

  133. Kitago, M., Martinez, S. R., Nakamura, T., Sim, M. S., & Hoon, D. S. (2009). Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma. Clinical Cancer Research, 15(9), 2988–2994.

    PubMed  CAS  Google Scholar 

  134. Muller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27(52), 6698–6706.

    PubMed  CAS  Google Scholar 

  135. Schultz, J., Lorenz, P., Gross, G., Ibrahim, S., & Kunz, M. (2008). MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Research, 18(5), 549–557.

    PubMed  CAS  Google Scholar 

  136. Bar-Eli, M. (2011). Searching for the ‘melano-miRs’: miR-214 drives melanoma metastasis. The EMBO Journal, 30(10), 1880–1881.

    PubMed  CAS  Google Scholar 

  137. Penna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., et al. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. The EMBO Journal, 30(10), 1990–2007.

    PubMed  CAS  Google Scholar 

  138. Keegan, L. P., Gallo, A., & O’Connell, M. A. (2001). The many roles of an RNA editor. Nature Review Genet, 2(11), 869–878.

    CAS  Google Scholar 

  139. Valente, L., & Nishikura, K. (2005). ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Progress in Nucleic Acid Research and Molecular Biology, 79, 299–338.

    PubMed  CAS  Google Scholar 

  140. Nishikura, K. (2006). Editor meets silencer: crosstalk between RNA editing and RNA interference. Nature Review Molecular Cell Biology, 7(12), 919–931.

    CAS  Google Scholar 

  141. Paz, N., Levanon, E. Y., Amariglio, N., Heimberger, A. B., Ram, Z., Constantini, S., et al. (2007). Altered adenosine-to-inosine RNA editing in human cancer. Genome Research, 17(11), 1586–1595.

    PubMed  CAS  Google Scholar 

  142. Maas, S., Patt, S., Schrey, M., & Rich, A. (2001). Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proceeding National Academy Science U S A, 98(25), 14687–14692.

    CAS  Google Scholar 

  143. Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507–2516.

    Google Scholar 

  144. Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723.

    Google Scholar 

  145. Robert, C., Thomas, L., Bondarenko, I., O’Day, S., M, D. J., Garbe, C., et al. (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517–2526.

  146. Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., et al. Inhibition of mutated, activated BRAF in metastatic melanoma. The New England Journal of Medicine, 363(9), 809-819.

  147. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., et al. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954.

    PubMed  CAS  Google Scholar 

  148. Melnikova, V. O., Dobroff, A. S., Zigler, M., Villares, G. J., Braeuer, R. R., Wang, H., et al. (2010). CREB inhibits AP-2alpha expression to regulate the malignant phenotype of melanoma. PLoS One, 5(8), e12452.

    Google Scholar 

  149. Rudolph, D., Tafuri, A., Gass, P., Hammerling, G. J., Arnold, B., & Schutz, G. (1998). Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proceeding National Academy Science U S A, 95(8), 4481–4486.

    CAS  Google Scholar 

  150. Yang, E., Boire, A., Agarwal, A., Nguyen, N., O’Callaghan, K., Tu, P., et al. (2009). Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Research, 69(15), 6223–6231.

    PubMed  CAS  Google Scholar 

  151. Becker, R. C., Moliterno, D. J., Jennings, L. K., Pieper, K. S., Pei, J., Niederman, A., et al. (2009). Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet, 373(9667), 919–928.

    PubMed  CAS  Google Scholar 

  152. Mills, L., Tellez, C., Huang, S., Baker, C., McCarty, M., Green, L., et al. (2002). Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Research, 62(17), 5106–5114.

    PubMed  CAS  Google Scholar 

  153. Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., et al. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. The American Journal of Pathology, 161(1), 125–134.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menashe Bar-Eli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mobley, A.K., Braeuer, R.R., Kamiya, T. et al. Driving transcriptional regulators in melanoma metastasis. Cancer Metastasis Rev 31, 621–632 (2012). https://doi.org/10.1007/s10555-012-9358-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9358-8

Keywords

Navigation