Skip to main content

Advertisement

Log in

Signal transduction by focal adhesion kinase in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cellular interactions with extracellular matrix play essential roles in tumor initiation, progression and metastasis. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase identified as a key mediator of signaling by integrins, a major family of cell surface receptors for extracellular matrix, as well as other receptors in both normal and cancer cells. FAK is activated by integrins through disruption of an auto-inhibitory intra-molecular interaction between its kinase domain and the amino terminal FERM domain. The activated FAK forms a binary complex with Src family kinases which can phosphorylate other substrates and trigger multiple intracellular signaling pathways to regulate various cellular functions. Subcellular localization of FAK in focal adhesions is essential for FAK signaling, which is another distinguishing feature of the kinase. Integrin-FAK signaling has been shown to activate a number of signaling pathways through phosphorylation and protein-protein interactions to promote tumorigenesis. FAK also plays a prominent role in tumor progression and metastasis through its regulation of both cancer cells and their microenvironments including cancer cell migration, invasion, epithelial to mesenchymal transition, and angiogenesis. More recently, a role for FAK in tumor initiation and progression has been demonstrated directly using xenograft as well as conditional knockout mouse models. In agreement with these experimental data, overexpression and activation of FAK have been found in a variety of human cancers. A number of small molecule inhibitors for FAK have been developed and in various phases of testing for cancer treatments. Overall, the intensive research on FAK signaling in cancer have yielded a wealth of information on this pivotal kinase and these and future studies are leading to potentially novel therapies for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hynes, R. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.

    PubMed  CAS  Google Scholar 

  2. Golden, A., Brugge, J. S., & Shattil, S. J. (1990). Role of platelet membrane glycoprotein IIb-IIIa in agonist-induced tyrosine phosphorylation of platelet proteins. Journal of Cell Biology, 111, 3117–3127.

    PubMed  CAS  Google Scholar 

  3. Ferrell Jr., J. E., & Martin, G. S. (1989). Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proceedings of the National Academy of Sciences of the United States of America, 86, 2234–2238.

    PubMed  CAS  Google Scholar 

  4. Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C., & Juliano, R. L. (1991). Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 88, 8392–8396.

    PubMed  CAS  Google Scholar 

  5. Guan, J. L., Trevithick, J. E., & Hynes, R. O. (1991). Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regulation, 2, 951–964.

    PubMed  CAS  Google Scholar 

  6. Kanner, S. B., Reynolds, A. B., Vines, R. R., & Parsons, J. T. (1990). Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proceedings of the National Academy of Sciences of the United States of America, 87, 3328–3332.

    PubMed  CAS  Google Scholar 

  7. Schaller, M. D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., & Parsons, J. T. (1992). pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 89, 5192–5196.

    PubMed  CAS  Google Scholar 

  8. Guan, J. L., & Shalloway, D. (1992). Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature, 358, 690–692.

    PubMed  CAS  Google Scholar 

  9. Parsons, J. T. (2003). Focal adhesion kinase: the first ten years. Journal of Cell Science, 116, 1409–1416.

    PubMed  CAS  Google Scholar 

  10. Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.

    PubMed  CAS  Google Scholar 

  11. Fiedorek Jr., F. T., & Kay, E. S. (1995). Mapping of the focal adhesion kinase (Fadk) gene to mouse chromosome 15 and human chromosome 8. Mammalian Genome, 6, 123–126.

    PubMed  CAS  Google Scholar 

  12. Whitney, G. S., Chan, P. Y., Blake, J., Cosand, W. L., Neubauer, M. G., Aruffo, A., et al. (1993). Human T and B lymphocytes express a structurally conserved focal adhesion kinase, pp125FAK. DNA and Cell Biology, 12, 823–830.

    Article  PubMed  CAS  Google Scholar 

  13. Lietha, D., Cai, X., Ceccarelli, D. F., Li, Y., Schaller, M. D., & Eck, M. J. (2007). Structural basis for the autoinhibition of focal adhesion kinase. Cell, 129, 1177–1187.

    PubMed  CAS  Google Scholar 

  14. Dunty, J. M., Gabarra-Niecko, V., King, M. L., Ceccarelli, D. F., Eck, M. J., & Schaller, M. D. (2004). FERM domain interaction promotes FAK signaling. Molecular and Cellular Biology, 24, 5353–5368.

    PubMed  CAS  Google Scholar 

  15. Cooper, L. A., Shen, T. L., & Guan, J. L. (2003). Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Molecular and Cellular Biology, 23, 8030–8041.

    PubMed  CAS  Google Scholar 

  16. Cohen, L. A., & Guan, J. L. (2005). Residues within the first subdomain of the FERM-like domain in focal adhesion kinase are important in its regulation. Journal of Biological Chemistry, 280, 8197–8207.

    PubMed  CAS  Google Scholar 

  17. Cai, X., Lietha, D., Ceccarelli, D. F., Karginov, A. V., Rajfur, Z., Jacobson, K., et al. (2008). Spatial and temporal regulation of focal adhesion kinase activity in living cells. Molecular and Cellular Biology, 28, 201–214.

    PubMed  CAS  Google Scholar 

  18. Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., et al. (2000). FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biology, 2, 249–256.

    PubMed  CAS  Google Scholar 

  19. Cary, L. A., & Guan, J. L. (1999). Focal adhesion kinase in integrin-mediated signaling. Frontiers in Bioscience, 4, D102–113.

    PubMed  CAS  Google Scholar 

  20. Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., & Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and Cellular Biology, 14, 1680–1688.

    PubMed  CAS  Google Scholar 

  21. Xing, Z., Chen, H. C., Nowlen, J. K., Taylor, S. J., Shalloway, D., & Guan, J. L. (1994). Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Molecular Biology of the Cell, 5, 413–421.

    PubMed  CAS  Google Scholar 

  22. Zachary, I., Sinnett-Smith, J., & Rozengurt, E. (1992). Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. Journal of Biological Chemistry, 267, 19031–19034.

    PubMed  CAS  Google Scholar 

  23. Frisch, S. M., Vuori, K., Ruoslahti, E., & Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. Journal of Cell Biology, 134, 793–799.

    PubMed  CAS  Google Scholar 

  24. Chan, P. Y., Kanner, S. B., Whitney, G., & Aruffo, A. (1994). A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. Journal of Biological Chemistry, 269, 20567–20574.

    PubMed  CAS  Google Scholar 

  25. Hungerford, J. E., Compton, M. T., Matter, M. L., Hoffstrom, B. G., & Otey, C. A. (1996). Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. Journal of Cell Biology, 135, 1383–1390.

    PubMed  CAS  Google Scholar 

  26. Xu, L. H., Owens, L. V., Sturge, G. C., Yang, X., Liu, E. T., Craven, R. J., et al. (1996). Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. Cell Growth & Differentiation, 7, 413–418.

    CAS  Google Scholar 

  27. Ilic, D., Almeida, E. A., Schlaepfer, D. D., Dazin, P., Aizawa, S., & Damsky, C. H. (1998). Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. Journal of Cell Biology, 143, 547–560.

    PubMed  CAS  Google Scholar 

  28. Chan, P. C., Lai, J. F., Cheng, C. H., Tang, M. J., Chiu, C. C., & Chen, H. C. (1999). Suppression of ultraviolet irradiation-induced apoptosis by overexpression of focal adhesion kinase in Madin-Darby canine kidney cells. Journal of Biological Chemistry, 274, 26901–26906.

    PubMed  CAS  Google Scholar 

  29. Sonoda, Y., Matsumoto, Y., Funakoshi, M., Yamamoto, D., Hanks, S. K., & Kasahara, T. (2000). Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. Journal of Biological Chemistry, 275, 16309–16315.

    PubMed  CAS  Google Scholar 

  30. Reiske, H. R., Kao, S. C., Cary, L. A., Guan, J. L., Lai, J. F., & Chen, H. C. (1999). Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. Journal of Biological Chemistry, 274, 12361–1236.

    PubMed  CAS  Google Scholar 

  31. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews. Drug discovery, 4, 988–1004.

    PubMed  CAS  Google Scholar 

  32. Luo, J., Manning, B. D., & Cantley, L. C. (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell, 4, 257–262.

    PubMed  CAS  Google Scholar 

  33. Kurenova, E., Xu, L. H., Yang, X., Baldwin Jr., A. S., Craven, R. J., Hanks, S. K., et al. (2004). Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Molecular and Cellular Biology, 24, 4361–4371.

    PubMed  CAS  Google Scholar 

  34. Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., et al. (2008). Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Molecular Cell, 29, 9–22.

    PubMed  CAS  Google Scholar 

  35. Gilmore, A. P., & Romer, L. H. (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Molecular Biology of the Cell, 7, 1209–1224.

    PubMed  CAS  Google Scholar 

  36. Sechler, J. L., & Schwarzbauer, J. E. (1998). Control of cell cycle progression by fibronectin matrix architecture. Journal of Biological Chemistry, 273, 25533–25536.

    PubMed  CAS  Google Scholar 

  37. Zhao, J. H., Reiske, H., & Guan, J. L. (1998). Regulation of the cell cycle by focal adhesion kinase. Journal of Cell Biology, 143, 1997–2008.

    PubMed  CAS  Google Scholar 

  38. Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., et al. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377, 539–544.

    PubMed  CAS  Google Scholar 

  39. Weis, S. M., Lim, S. T., Lutu-Fuga, K. M., Barnes, L. A., Chen, X. L., Gothert, J. R., et al. (2008). Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK. Journal of Cell Biology, 181, 43–50.

    PubMed  CAS  Google Scholar 

  40. Shen, T. L., Park, A. Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., et al. (2005). Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology, 169, 941–952.

    PubMed  CAS  Google Scholar 

  41. Schlaepfer, D. D., Hanks, S. K., Hunter, T., & van der Geer, P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372, 786–791.

    PubMed  CAS  Google Scholar 

  42. Schlaepfer, D. D., Jones, K. C., & Hunter, T. (1998). Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src—and focal adhesion kinase-initiated tyrosine phosphorylation events. Molecular and Cellular Biology, 18, 2571–2585.

    PubMed  CAS  Google Scholar 

  43. Zhao, J., Pestell, R., & Guan, J. L. (2001). Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Molecular Biology of the Cell, 12, 4066–4077.

    PubMed  CAS  Google Scholar 

  44. Oktay, M., Wary, K. K., Dans, M., Birge, R. B., & Giancotti, F. G. (1999). Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. Journal of Cell Biology, 145, 1461–1469.

    PubMed  CAS  Google Scholar 

  45. Zhao, J., Bian, Z. C., Yee, K., Chen, B. P., Chien, S., & Guan, J. L. (2003). Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Molecular Cell, 11, 1503–1515.

    PubMed  CAS  Google Scholar 

  46. Ding, Q., Grammer, J. R., Nelson, M. A., Guan, J. L., Stewart Jr., J. E., & Gladson, C. L. (2005). p27Kip1 and cyclin D1 are necessary for focal adhesion kinase regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. Journal of Biological Chemistry, 280, 6802–6815.

    PubMed  CAS  Google Scholar 

  47. Bond, M., Sala-Newby, G. B., & Newby, A. C. (2004). Focal adhesion kinase (FAK)-dependent regulation of S-phase kinase-associated protein-2 (Skp-2) stability. A novel mechanism regulating smooth muscle cell proliferation. Journal of Biological Chemistry, 279, 37304–37310.

    PubMed  CAS  Google Scholar 

  48. Carrano, A. C., Eytan, E., Hershko, A., & Pagano, M. (1999). SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1, 193–199.

    PubMed  CAS  Google Scholar 

  49. Bryant, P., Zheng, Q., & Pumiglia, K. (2006) Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and independent mechanisms. Molecular and Cellular Biology, 26, 4201–4213.

    PubMed  CAS  Google Scholar 

  50. Romer, L. H., McLean, N., Turner, C. E., & Burridge, K. (1994). Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Molecular Biology of the Cell, 5, 349–361.

    PubMed  CAS  Google Scholar 

  51. Gates, R. E., King Jr., L. E., Hanks, S. K., & Nanney, L. B. (1994). Potential role for focal adhesion kinase in migrating and proliferating keratinocytes near epidermal wounds and in culture. Cell Growth & Differentiation, 5, 891–899.

    CAS  Google Scholar 

  52. Cary, L. A., Chang, J. F., & Guan, J. L. (1996). Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. Journal of Cell Science, 109, 1787–1794.

    PubMed  CAS  Google Scholar 

  53. Sieg, D. J., Hauck, C. R., & Schlaepfer, D. D. (1999). Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of Cell Science, 112, 2677–2691.

    PubMed  CAS  Google Scholar 

  54. Owen, J. D., Ruest, P. J., Fry, D. W., & Hanks, S. K. (1999). Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto—and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Molecular and Cellular Biology, 19, 4806–4818.

    PubMed  CAS  Google Scholar 

  55. Cary, L. A., Han, D. C., Polte, T. R., Hanks, S. K., & Guan, J. L. (1998). Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. Journal of Cell Biology, 140, 211–221.

    PubMed  CAS  Google Scholar 

  56. Klemke, R. L., Leng, J., Molander, R., Brooks, P. C., Vuori, K., & Cheresh, D. A. (1998). CAS/Crk coupling serves as a "molecular switch" for induction of cell migration. Journal of Cell Biology, 140, 961–972.

    PubMed  CAS  Google Scholar 

  57. Richardson, A., & Parsons, T. (1996). A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK [published erratum appears in Nature 1996 Jun 27;381(6585):810]. Nature, 380, 538–540.

    PubMed  CAS  Google Scholar 

  58. Cho, S. Y., & Klemke, R. L. (2000). Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. Journal of Cell Biology, 149, 223–236.

    PubMed  CAS  Google Scholar 

  59. Cheresh, D. A., Leng, J., & Klemke, R. L. (1999). Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. Journal of Cell Biology, 146, 1107–1116.

    PubMed  CAS  Google Scholar 

  60. Turner, C. E. (2000). Paxillin interactions. Journal of Cell Science, 113, 4139–4140.

    PubMed  CAS  Google Scholar 

  61. Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., et al. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. Journal of Cell Biology, 145, 851–863.

    PubMed  CAS  Google Scholar 

  62. West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 154, 161–176.

    PubMed  CAS  Google Scholar 

  63. Han, D. C., & Guan, J. L. (1999). Association of focal adhesion kinase with Grb7 and its role in cell migration. Journal of Biological Chemistry, 274, 24425–24430.

    PubMed  CAS  Google Scholar 

  64. Han, D. C., Shen, T. L., & Guan, J. L. (2000). Role of Grb7 targeting to focal contacts and its phosphorylation by focal adhesion kinase in regulation of cell migration. Journal of Biological Chemistry, 275, 28911–28917.

    PubMed  CAS  Google Scholar 

  65. Shen, T. L., Han, D. C., & Guan, J. L. (2002). Association of Grb7 with phosphoinositides and its role in the regulation of cell migration. Journal of Biological Chemistry, 277, 29069–29077.

    PubMed  CAS  Google Scholar 

  66. Ren, X. D., Kiosses, W. B., Sieg, D. J., Otey, C. A., Schlaepfer, D. D., & Schwartz, M. A. (2000). Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. Journal of Cell Science, 113, 3673–3678.

    PubMed  CAS  Google Scholar 

  67. Hsia, D. A., Mitra, S. K., Hauck, C. R., Streblow, D. N., Nelson, J. A., Ilic, D., et al. (2003). Differential regulation of cell motility and invasion by FAK. Journal of Cell Biology, 160, 753–767.

    PubMed  CAS  Google Scholar 

  68. Chen, B. H., Tzen, J. T., Bresnick, A. R., & Chen, H. C. (2002). Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. Journal of Biological Chemistry, 277, 33857–33863.

    PubMed  CAS  Google Scholar 

  69. Zhai, J., Lin, H., Nie, Z., Wu, J., Canete-Soler, R., Schlaepfer, W. W., et al. (2003). Direct interaction of focal adhesion kinase with p190RhoGEF. Journal of Biological Chemistry, 278, 24865–24873.

    PubMed  CAS  Google Scholar 

  70. Hildebrand, J. D., Taylor, J. M., & Parsons, J. T. (1996). An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Molecular and Cellular Biology, 16, 3169–3178.

    PubMed  CAS  Google Scholar 

  71. Liu, Y., Loijens, J. C., Martin, K. H., Karginov, A. V., & Parsons, J. T. (2002). The association of ASAP1, an ADP ribosylation factor-GTPase activating protein, with focal adhesion kinase contributes to the process of focal adhesion assembly. Molecular Biology of the Cell, 13, 2147–2156.

    PubMed  CAS  Google Scholar 

  72. Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T., & Guan, J. L. (2004). Focal adhesion kinase regulation of N-WASP subcellular localization and function. Journal of Biological Chemistry, 279, 9565–9576.

    PubMed  CAS  Google Scholar 

  73. Hauck, C. R., Hsia, D. A., Puente, X. S., Cheresh, D. A., & Schlaepfer, D. D. (2002). FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. Embo Journal, 21, 6289–6302.

    PubMed  CAS  Google Scholar 

  74. Shibata, K., Kikkawa, F., Nawa, A., Thant, A. A., Naruse, K., Mizutani, S., et al. (1998). Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Cancer Research, 58, 900–903.

    PubMed  CAS  Google Scholar 

  75. Wu, X., Gan, B., Yoo, Y., & Guan, J. L. (2005). FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Developmental Cell, 9, 185–196.

    PubMed  CAS  Google Scholar 

  76. Irby, R. B., & Yeatman, T. J. (2002). Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Research, 62, 2669–2674.

    PubMed  CAS  Google Scholar 

  77. Avizienyte, E., & Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current Opinion in Cell Biology, 17, 542–547.

    PubMed  CAS  Google Scholar 

  78. McLean, G. W., Carragher, N. O., Avizienyte, E., Evans, J., Brunton, V. G., & Frame, M. C. (2005). The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nature Reviews. Cancer, 5, 505–515.

    PubMed  CAS  Google Scholar 

  79. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews. Molecular and Cellular Biology, 7, 131–142.

    CAS  Google Scholar 

  80. Avizienyte, E., Wyke, A. W., Jones, R. J., McLean, G. W., Westhoff, M. A., Brunton, V. G., et al. (2002). Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nature Cell Biology, 4, 632–638.

    PubMed  CAS  Google Scholar 

  81. Bailey, K. M., & Liu, J. (2008). Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. Journal of Biological Chemistry, 283, 13714–13724.

    PubMed  CAS  Google Scholar 

  82. Cicchini, C., Laudadio, I., Citarella, F., Corazzari, M., Steindler, C., Conigliaro, A., et al. (2008). TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Experimental Cell Research, 314, 143–152.

    PubMed  CAS  Google Scholar 

  83. Nakamura, K., Yano, H., Schaefer, E., & Sabe, H. (2001). Different modes and qualities of tyrosine phosphorylation of Fak and Pyk2 during epithelial-mesenchymal transdifferentiation and cell migration: analysis of specific phosphorylation events using site-directed antibodies. Oncogene, 20, 2626–2635.

    PubMed  CAS  Google Scholar 

  84. Prunier, C., & Howe, P. H. (2005). Disabled-2 (Dab2) is required for transforming growth factor beta-induced epithelial to mesenchymal transition (EMT). Journal of Biological Chemistry, 280, 17540–17548.

    PubMed  CAS  Google Scholar 

  85. Strizzi, L., Bianco, C., Normanno, N., Seno, M., Wechselberger, C., Wallace-Jones, B., et al. (2004). Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. Journal of Cellular Physiology, 201, 266–276.

    PubMed  CAS  Google Scholar 

  86. Rodrigo, J. P., Dominguez, F., Suarez, V., Canel, M., Secades, P., & Chiara, M. D. (2007). Focal adhesion kinase and E-cadherin as markers for nodal metastasis in laryngeal cancer. Archives of Otolaryngology-head & Neck Surgery, 133, 145–150.

    Google Scholar 

  87. Wang, X., Zheng, M., Liu, G., Xia, W., McKeown-Longo, P. J., Hung, M. C., et al. (2007). Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Research, 67, 7184–7193.

    PubMed  CAS  Google Scholar 

  88. Wang, X., Urvalek, A. M., Liu, J., & Zhao, J. (2008). Activation of KLF8 transcription by focal adhesion kinase in human ovarian epithelial and cancer cells. Journal of Biological Chemistry, 283, 13934–13942.

    PubMed  CAS  Google Scholar 

  89. Wang, X., & Zhao, J. (2007). KLF8 transcription factor participates in oncogenic transformation. Oncogene, 26, 456–461.

    PubMed  Google Scholar 

  90. Polte, T. R., Naftilan, A. J., & Hanks, S. K. (1994). Focal adhesion kinase is abundant in developing blood vessels and elevation of its phosphotyrosine content in vascular smooth muscle cells is a rapid response to angiotensin II. Journal of Cellular Biochemistry, 55, 106–119.

    PubMed  CAS  Google Scholar 

  91. Qi, J. H., & Claesson-Welsh, L. (2001). VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Experimental Cell Research, 263, 173–182.

    PubMed  CAS  Google Scholar 

  92. Kim, I., Kim, H. G., Moon, S. O., Chae, S. W., So, J. N., Koh, K. N., et al. (2000). Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circulation Research, 86, 952–959.

    PubMed  CAS  Google Scholar 

  93. Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., et al. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79, 1157–1164.

    PubMed  CAS  Google Scholar 

  94. Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.

    PubMed  CAS  Google Scholar 

  95. Eliceiri, B. P., & Cheresh, D. A. (1999). The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. Journal of Clinical Investigation, 103, 1227–1230.

    PubMed  CAS  Google Scholar 

  96. Eliceiri, B. P., Puente, X. S., Hood, J. D., Stupack, D. G., Schlaepfer, D. D., Huang, X. Z., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.

    PubMed  CAS  Google Scholar 

  97. Ilic, D., Kovacic, B., McDonagh, S., Jin, F., Baumbusch, C., Gardner, D. G., et al. (2003). Focal adhesion kinase is required for blood vessel morphogenesis. Circulation Research, 92, 300–307.

    PubMed  CAS  Google Scholar 

  98. Braren, R., Hu, H., Kim, Y. H., Beggs, H. E., Reichardt, L. F., & Wang, R. (2006). Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. Journal of Cell Biology, 172, 151–162.

    PubMed  CAS  Google Scholar 

  99. Peng, X., Ueda, H., Zhou, H., Stokol, T., Shen, T. L., Alcaraz, A., et al. (2004). Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice. Cardiovascular Research, 64, 421–430.

    PubMed  CAS  Google Scholar 

  100. Abdel-Ghany, M., Cheng, H. C., Elble, R. C., & Pauli, B. U. (2002). Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. Journal of Biological Chemistry, 277, 34391–34400.

    PubMed  CAS  Google Scholar 

  101. Benlimame, N., He, Q., Jie, S., Xiao, D., Xu, Y. J., Loignon, M., et al. (2005). FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion. Journal of Cell Biology, 171, 505–516.

    PubMed  CAS  Google Scholar 

  102. van Nimwegen, M. J., Verkoeijen, S., van Buren, L., Burg, D., & van de Water, B. (2005). Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Research, 65, 4698–4706.

    PubMed  Google Scholar 

  103. Mitra, S. K., Lim, S. T., Chi, A., & Schlaepfer, D. D. (2006). Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngeneic tumor model. Oncogene, 25, 4429–4440.

    PubMed  CAS  Google Scholar 

  104. Wang, D., Grammer, J. R., Cobbs, C. S., Stewart Jr., J. E., Liu, Z., Rhoden, R., et al. (2000). p125 focal adhesion kinase promotes malignant astrocytoma cell proliferation in vivo. Journal of Cell Science, 113, 4221–4230.

    PubMed  CAS  Google Scholar 

  105. McLean, G. W., Brown, K., Arbuckle, M. I., Wyke, A. W., Pikkarainen, T., Ruoslahti, E., et al. (2001). Decreased focal adhesion kinase suppresses papilloma formation during experimental mouse skin carcinogenesis. Cancer Research, 61, 8385–8389.

    PubMed  CAS  Google Scholar 

  106. McLean, G. W., Komiyama, N. H., Serrels, B., Asano, H., Reynolds, L., Conti, F., et al. (2004). Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes & Development, 18, 2998–3003.

    CAS  Google Scholar 

  107. Lahlou, H., Sanguin-Gendreau, V., Zuo, D., Cardiff, R. D., McLean, G. W., Frame, M. C., et al. (2007). Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 104, 20302–20307.

    PubMed  CAS  Google Scholar 

  108. Owens, L. V., Xu, L., Craven, R. J., Dent, G. A., Weiner, T. M., Kornberg, L., et al. (1995). Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Research, 55, 2752–2755.

    PubMed  CAS  Google Scholar 

  109. Owens, L. V., Xu, L., Dent, G. A., Yang, X., Sturge, G. C., Craven, R. J., et al. (1996). Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Annals of Surgical Oncology, 3, 100–105.

    PubMed  CAS  Google Scholar 

  110. Weiner, T. M., Liu, E. T., Craven, R. J., & Cance, W. G. (1993). Expression of focal adhesion kinase gene and invasive cancer. Lancet, 342, 1024–1025.

    PubMed  CAS  Google Scholar 

  111. Agochiya, M., Brunton, V. G., Owens, D. W., Parkinson, E. K., Paraskeva, C., Keith, W. N., et al. (1999). Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene, 18, 5646–5653.

    PubMed  CAS  Google Scholar 

  112. Tremblay, L., Hauck, W., Aprikian, A. G., Begin, L. R., Chapdelaine, A., & Chevalier, S. (1996). Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. International Journal of Cancer, 68, 164–171.

    CAS  Google Scholar 

  113. Zagzag, D., Friedlander, D. R., Margolis, B., Grumet, M., Semenza, G. L., Zhong, H., et al. (2000). Molecular events implicated in brain tumor angiogenesis and invasion. Pediatric Neurosurgery, 33, 49–55.

    PubMed  CAS  Google Scholar 

  114. Wang, J. F., Park, I. W., & Groopman, J. E. (2000). Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood, 95, 2505–2513.

    PubMed  CAS  Google Scholar 

  115. Gutenberg, A., Bruck, W., Buchfelder, M., & Ludwig, H. C. (2004). Expression of tyrosine kinases FAK and Pyk2 in 331 human astrocytomas. Acta Neuropathologica, 108, 224–230.

    PubMed  CAS  Google Scholar 

  116. Hecker, T. P., Grammer, J. R., Gillespie, G. Y., Stewart Jr., J., & Gladson, C. L. (2002). Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Research, 62, 2699–2707.

    PubMed  CAS  Google Scholar 

  117. Jones, G., Machado Jr., J., & Merlo, A. (2001). Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptor-dependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Research, 61, 4978–4981.

    PubMed  CAS  Google Scholar 

  118. Garcia, S., Dales, J. P., Charafe-Jauffret, E., Carpentier-Meunier, S., Andrac-Meyer, L., Jacquemier, J., et al. (2007). Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis. International Journal of Oncology, 31, 49–58.

    PubMed  Google Scholar 

  119. Cance, W. G., Harris, J. E., Iacocca, M. V., Roche, E., Yang, X., Chang, J., et al. (2000). Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clinical Cancer Research, 6, 2417–2423.

    PubMed  CAS  Google Scholar 

  120. Lark, A. L., Livasy, C. A., Dressler, L., Moore, D. T., Millikan, R. C., Geradts, J., et al. (2005). High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Modern Pathology, 18, 1289–1294.

    PubMed  CAS  Google Scholar 

  121. Su, J. M., Gui, L., Zhou, Y. P., & Zha, X. L. (2002). Expression of focal adhesion kinase and alpha5 and beta1 integrins in carcinomas and its clinical significance. World Journal of Gastroenterology, 8, 613–618.

    PubMed  CAS  Google Scholar 

  122. Gabriel, B., zur Hausen, A., Stickeler, E., Dietz, C., Gitsch, G., Fischer, D. C., et al. (2006). Weak expression of focal adhesion kinase (pp125FAK) in patients with cervical cancer is associated with poor disease outcome. Clinical Cancer Research, 12, 2476–2483.

    PubMed  CAS  Google Scholar 

  123. Han, N. M., Fleming, R. Y., Curley, S. A., & Gallick, G. E. (1997). Overexpression of focal adhesion kinase (p125FAK) in human colorectal carcinoma liver metastases: independence from c-src or c-yes activation. Annals of Surgical Oncology, 4, 264–268.

    PubMed  CAS  Google Scholar 

  124. Ayaki, M., Komatsu, K., Mukai, M., Murata, K., Kameyama, M., Ishiguro, S., et al. (2001). Reduced expression of focal adhesion kinase in liver metastases compared with matched primary human colorectal adenocarcinomas. Clinical Cancer Research, 7, 3106–3112.

    PubMed  CAS  Google Scholar 

  125. Lark, A. L., Livasy, C. A., Calvo, B., Caskey, L., Moore, D. T., Yang, X., et al. (2003). Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clinical Cancer Research, 9, 215–222.

    PubMed  CAS  Google Scholar 

  126. Theocharis, S. E., Kouraklis, G. P., Kakisis, J. D., Kanelli, H. G., Apostolakou, F. E., Karatzas, G. M., et al. (2003). Focal adhesion kinase expression is not a prognostic predictor in colon adenocarcinoma patients. European Journal of Surgical Oncology, 29, 571–574.

    PubMed  CAS  Google Scholar 

  127. Yu, H. G., Tong, S. L., Ding, Y. M., Ding, J., Fang, X. M., Zhang, X. F., et al. (2006). Enhanced expression of cholecystokinin-2 receptor promotes the progression of colon cancer through activation of focal adhesion kinase. International Journal of Cancer, 119, 2724–2732.

    CAS  Google Scholar 

  128. Livasy, C. A., Moore, D., Cance, W. G., & Lininger, R. A. (2004). Focal adhesion kinase overexpression in endometrial neoplasia. Applied Immunohistochemistry & Molecular Morphology, 12, 342–345.

    CAS  Google Scholar 

  129. Miyazaki, T., Kato, H., Nakajima, M., Sohda, M., Fukai, Y., Masuda, N., et al. (2003). FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. British Journal of Cancer, 89, 140–145.

    PubMed  CAS  Google Scholar 

  130. Canel, M., Secades, P., Rodrigo, J. P., Cabanillas, R., Herrero, A., Suarez, C., et al. (2006). Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent of fak gene copy number. Clinical Cancer Research, 12, 3272–3279.

    PubMed  CAS  Google Scholar 

  131. Fujii, T., Koshikawa, K., Nomoto, S., Okochi, O., Kaneko, T., Inoue, S., et al. (2004). Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor. Journal of Hepatology, 41, 104–111.

    PubMed  CAS  Google Scholar 

  132. Itoh, S., Maeda, T., Shimada, M., Aishima, S., Shirabe, K., Tanaka, S., et al. (2004). Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clinical Cancer Research, 10, 2812–2817.

    PubMed  CAS  Google Scholar 

  133. Miyasaka, Y., Enomoto, N., Nagayama, K., Izumi, N., Marumo, F., Watanabe, M., et al. (2001). Analysis of differentially expressed genes in human hepatocellular carcinoma using suppression subtractive hybridization. British Journal of Cancer, 85, 228–234.

    PubMed  CAS  Google Scholar 

  134. Yuan, Z., Fan, J., Wu, Z. Q., Zhou, J., & Qiu, S. J. (2007). [Focal adhesion kinase mRNA overexpression in hepatocellular carcinoma HCC) and correlation thereof with prognosis of HCC]. Zhonghua Yi Xue Za Zhi, 87, 1256–1259.

    PubMed  CAS  Google Scholar 

  135. Aronsohn, M. S., Brown, H. M., Hauptman, G., & Kornberg, L. J. (2003). Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx. Laryngoscope, 113, 1944–1948.

    PubMed  CAS  Google Scholar 

  136. Yu, H. G., Schrader, H., Otte, J. M., Schmidt, W. E., & Schmitz, F. (2004). Rapid tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130Cas by gastrin in human colon cancer cells. Biochemical Pharmacology, 67, 135–146.

    PubMed  CAS  Google Scholar 

  137. Carelli, S., Zadra, G., Vaira, V., Falleni, M., Bottiglieri, L., Nosotti, M., et al. (2006). Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer, 53, 263–271.

    PubMed  Google Scholar 

  138. Hsu, N. Y., Chen, C. Y., Hsu, C. P., Lin, T. Y., Chou, M. C., Chiou, S. H., et al. (2007). Prognostic significance of expression of nm23-H1 and focal adhesion kinase in non-small cell lung cancer. Oncology Reports, 18, 81–85.

    PubMed  CAS  Google Scholar 

  139. Imaizumi, M., Nishimura, M., Takeuchi, S., Murase, M., & Hamaguchi, M. (1997). Role of tyrosine specific phosphorylation of cellular proteins, especially EGF receptor and p125FAK in human lung cancer cells. Lung Cancer, 17, 69–84.

    PubMed  CAS  Google Scholar 

  140. Nishimura, M., Machida, K., Imaizumi, M., Abe, T., Umeda, T., Takeshima, E., et al. (1996). Tyrosine phosphorylation of 100–130 kDa proteins in lung cancer correlates with poor prognosis. British Journal of Cancer, 74, 780–787.

    PubMed  CAS  Google Scholar 

  141. Wang, X. Y., Liu, T., Zhu, C. Z., Li, Y., Sun, R., Sun, C. Y., et al. (2005). Expression of KAI1, MRP-1, and FAK proteins in lung cancer detected by high-density tissue microarray. Ai Zheng, 24, 1091–1095.

    PubMed  CAS  Google Scholar 

  142. He, Z. X., He, H. W., Wang, D., & Fang, M. X. (2006). Expression and clinical significance of focal adhesion kinase in oral squamous cell carcinoma. Sichuan Da Xue Xue Bao Yi Xue Ban, 37, 876–878.

    PubMed  CAS  Google Scholar 

  143. Kornberg, L. J. (1998). Focal adhesion kinase expression in oral cancers. Head Neck, 20, 634–639.

    PubMed  CAS  Google Scholar 

  144. Grisaru-Granovsky, S., Salah, Z., Maoz, M., Pruss, D., Beller, U., & Bar-Shavit, R. (2005). Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. International Journal of Cancer, 113, 372–378.

    CAS  Google Scholar 

  145. Judson, P. L., He, X., Cance, W. G., & Van Le, L. (1999). Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer, 86, 1551–1556.

    PubMed  CAS  Google Scholar 

  146. Sood, A. K., Coffin, J. E., Schneider, G. B., Fletcher, M. S., DeYoung, B. R., Gruman, L. M., et al. (2004). Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. American Journal of Pathology, 165, 1087–1095.

    PubMed  CAS  Google Scholar 

  147. Rovin, J. D., Frierson Jr., H. F., Ledinh, W., Parsons, J. T., & Adams, R. B. (2002). Expression of focal adhesion kinase in normal and pathologic human prostate tissues. Prostate, 53, 124–132.

    PubMed  CAS  Google Scholar 

  148. Kim, S. J., Park, J. W., Yoon, J. S., Mok, J. O., Kim, Y. J., Park, H. K., et al. (2004). Increased expression of focal adhesion kinase in thyroid cancer: immunohistochemical study. Journal of Korean Medical Science, 19, 710–715.

    Article  PubMed  CAS  Google Scholar 

  149. Gabarra-Niecko, V., Schaller, M. D., & Dunty, J. M. (2003). FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Reviews, 22, 359–374.

    PubMed  CAS  Google Scholar 

  150. Recher, C., Ysebaert, L., Beyne-Rauzy, O., Mansat-De Mas, V., Ruidavets, J. B., Cariven, P., et al. (2004). Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Research, 64, 3191–3197.

    PubMed  CAS  Google Scholar 

  151. Schlaepfer, D. D., Mitra, S. K., & Ilic, D. (2004). Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochimica et Biophysica Acta, 1692, 77–102.

    PubMed  CAS  Google Scholar 

  152. Furuyama, K., Doi, R., Mori, T., Toyoda, E., Ito, D., Kami, K., et al. (2006). Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World Journal of Surgery, 30, 219–226.

    PubMed  Google Scholar 

  153. Oktay, M. H., Oktay, K., Hamele-Bena, D., Buyuk, A., & Koss, L. G. (2003). Focal adhesion kinase as a marker of malignant phenotype in breast and cervical carcinomas. Human Pathology, 34, 240–245.

    PubMed  CAS  Google Scholar 

  154. Madan, R., Smolkin, M. B., Cocker, R., Fayyad, R., & Oktay, M. H. (2006). Focal adhesion proteins as markers of malignant transformation and prognostic indicators in breast carcinoma. Human Pathology, 37, 9–15.

    PubMed  CAS  Google Scholar 

  155. Okamoto, H., Yasui, K., Zhao, C., Arii, S., & Inazawa, J. (2003). PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology, 38, 1242–1249.

    PubMed  CAS  Google Scholar 

  156. Golubovskaya, V., Kaur, A., & Cance, W. (2004). Cloning and characterization of the promoter region of human focal adhesion kinase gene: nuclear factor kappa B and p53 binding sites. Biochimica et Biophysica Acta, 1678, 111–125.

    PubMed  CAS  Google Scholar 

  157. Golubovskaya, V. M., & Cance, W. G. (2007). Focal adhesion kinase and p53 signaling in cancer cells. International Review of Cytology, 263, 103–153.

    PubMed  CAS  Google Scholar 

  158. Slack-Davis, J. K., Martin, K. H., Tilghman, R. W., Iwanicki, M., Ung, E. J., Autry, C., et al. (2007). Cellular characterization of a novel focal adhesion kinase inhibitor. Journal of Biological Chemistry, 282, 14845–14852.

    PubMed  CAS  Google Scholar 

  159. Roberts, W. G., Ung, E., Whalen, P., Cooper, B., Hulford, C., Autry, C., et al. (2008). Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Research, 68, 1935–1944.

    PubMed  CAS  Google Scholar 

  160. Bagi, C. M., Roberts, G. W., & Andresen, C. J. (2008). Dual focal adhesion kinase/Pyk2 inhibitor has positive effects on bone tumors: implications for bone metastases. Cancer, 112, 2313–2321.

    PubMed  CAS  Google Scholar 

  161. Siu, L. L., Burris, H. A., Mileshkin, L., Camidge, D., Rischin, D. R., Chen, E. X., et al. (2007). Phase 1 study of a focal adhesion kinase (FAK) inhibitor PF-00562271 in patients (pts) with advanced solid tumors. Journal of Clinical Oncology, 25, 3527.

    Google Scholar 

  162. Liu, T. J., LaFortune, T., Honda, T., Ohmori, O., Hatakeyama, S., Meyer, T., et al. (2007). Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Molecular Cancer Therapeutics, 6, 1357–1367.

    PubMed  CAS  Google Scholar 

  163. Beierle, E. A., Trujillo, A., Nagaram, A., Golubovskaya, V. M., Cance, W. G., & Kurenova, E. V. (2008). TAE226 inhibits human neuroblastoma cell survival. Cancer Investigation, 26, 145–151.

    PubMed  CAS  Google Scholar 

  164. Golubovskaya, V. M., Virnig, C., & Cance, W. G. (2008). TAE226-induced apoptosis in breast cancer cells with overexpressed Src or EGFR. Molecular Carcinogenesis, 47, 222–234.

    PubMed  CAS  Google Scholar 

  165. Halder, J., Lin, Y. G., Merritt, W. M., Spannuth, W. A., Nick, A. M., Honda, T., et al. (2007). Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Research, 67, 10976–10983.

    PubMed  CAS  Google Scholar 

  166. Watanabe, N., Takaoka, M., Sakurama, K., Tomono, Y., Hatakeyama, S., Ohmori, O., et al. (2008). Dual tyrosine kinase inhibitor for focal adhesion kinase and insulin-like growth factor-I receptor exhibits anticancer effect in esophageal adenocarcinoma in vitro and in vivo. Clinical Cancer Research, 14, 4631–4639.

    PubMed  CAS  Google Scholar 

  167. Shi, Q., Hjelmeland, A. B., Keir, S. T., Song, L., Wickman, S., Jackson, D., et al. (2007). A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Molecular Carcinogenesis, 46, 488–496.

    PubMed  CAS  Google Scholar 

  168. Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.

    PubMed  CAS  Google Scholar 

  169. Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66, 1883–1890 discussion 1895–1886.

    PubMed  CAS  Google Scholar 

  170. Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M-L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.

    PubMed  CAS  Google Scholar 

  171. Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993–997.

    PubMed  CAS  Google Scholar 

  172. Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13, 141–152.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ming Luo for critical reading of the manuscript and helpful suggestions. This work is supported by American Cancer Society grant (RSG CCG-111381) to J Zhao and NIH grant GM48050 to JL Guan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihe Zhao or Jun-Lin Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Guan, JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28, 35–49 (2009). https://doi.org/10.1007/s10555-008-9165-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9165-4

Keywords

Navigation